走出大模型部署新手村!小明这样用魔搭×函数计算

本文涉及的产品
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
函数计算FC,每月15万CU 3个月
简介: 走出大模型部署新手村!小明这样用魔搭×函数计算

作者:拓山

前文介绍了魔搭 ModelScope 社区模型服务 SwingDeploy 服务。开发者可以将模型从魔搭社区的模型库一键部署至阿里云函数计算,当选择模型并部署时,系统会选择对应的机器配置。按需使用可以在根据工作负载动态的减少资源,节约机器使用成本。5 分钟完成从开源模型至模型推理 API 服务的生产转换……好,优势前文已经介绍过了。


那么,到底怎么应该怎么开始使用,本文将带小明(纯纯的小白)走出新手村,体验魔搭社区的一键部署服务(SwingDeploy[1]),对小明的种种疑惑进行解答。开始!



小明如何在魔搭社区一键部署开源模型?


魔搭开源社区当前只有热门开源模型支持一键部署(可支持部署的模型列表紧密扩充中),小明可以在模型库列表页面,过滤支持快速部署的 SwingDeploy 的模型列表,然后点击进模型详情页,其中模型详情页的右上角包含有部署按钮,可以进行快速部署(SwingDeploy)。



模型列表页过滤支持模型部署的模型列表。



模型详情页:右上快速部署。


另外,小明可以切换至首页,通过左侧【模型服务】进入模型部署服务(SwingDeploy)页面。



在新建快速部署(SwingDeploy)后,小明可以针对模型部署信息进行配置,包括必要的部署模型版本、部署地域、部署卡型、部署显存等。



当小明点击确认快速配置无误后,通过点击【一键部署】按钮,从而进入部署过程;整个过程一般持续 1-5 分钟,当部署完成后,可以看到服务状态切换为【部署成功】。



小明在魔搭一键部署模型到 FC 后,实际在 FC 部署了什么?


当小明将魔搭开源模型一键部署(SwingDeploy)到阿里云函数计算 FC 后,实际上是在阿里云函数计算 FC 平台创建了对应的服务与函数;服务和函数是阿里云函数计算资源模型中的一级概念:


  • 服务:
  • 一个服务中可以包含多个函数。
  • 在服务级别上可以配置日志采集、网络通道、存储扩展等,服务中的所有函数继承服务中的这些配置。
  • 函数:
  • 函数是调度与运行的基本单位,是平台用户业务逻辑的所在,其中指明了代码/容器镜像,配置了 CPU/内存/显存/GPU 的运行规格等。


函数计算平台在收到该函数的推理请求调用后,会根据服务和函数的配置来创建对应的 CPU/GPU 容器实例。函数实例处理完请求后,再由平台将响应返回给用户。对应的 CPU/GPU 容器实例空闲一段时间没有处理调用请求后,函数计算平台会将其释放。所以默认情况下,空闲未使用的服务/函数没有资源消耗,函数计算仅对请求处理部分计费。


使用魔搭的“模型服务” SwingDeploy 一键部署模型到函数计算后,可以在部署列表中看到“服务名称”,使用服务名称可以到函数计算控制台[2]相应地域的服务列表找到部署好的服务和函数。



函数计算控制台的服务与函数页面,搜索指定的服务。



用户通过魔搭一键部署模型后,在函数计算会对应生成的一个服务与其下的两个函数:


  • model_download_func 作用:用于部署阶段将魔搭模型下载至用户 NAS 内。
  • model_app_func作用:基于 Flask + 魔搭模型的推理 API,具体源码可见链接[3]



小明如何调用部署在 FC 的模型?


函数的调用是事件驱动的,我们定义一组规则,事件源产生的事件若匹配这些规则,就会触发函数的调用执行。这些规则的定义在函数计算中由“触发器[4]承载。具体到魔搭一键部署的函数,我们默认为其配置了一个 HTTP 触发器,若有相应的 HTTP 请求发生,即会触发函数的调用,详见函数计算平台 HTTP 触发器的使用文档[5]


小明可以通过魔搭平台提供的示例代码调用已部署好的模型。



魔搭示例代码中 API_URL 中的 HTTP URL,就是函数计算为每个魔搭模型函数配置的 HTTP 触发器。可以通过 FC 控制台,找到对应的魔搭服务下的 model_app_func 函数,通过查看函数详情页的“触发器管理”选项卡,查看更为详细的触发器信息。



小明发现部署在 FC 的模型首次调用耗时长,后续调用耗时短,如何调优


如上所说,函数如果长时间空闲(没有调用发生),平台会通过回收函数实例来释放资源。函数计算平台在收到一个调用请求后,会判断当前是否有空闲的函数实例可供使用,如果没有,则需要新创建一个函数实例来服务该请求,这个过程称之为冷启动。


如果函数实例初始化时间耗时较长,那么服务该实例上发生的初次调用的时延也会增加,例如,初始化较大的模型文件(ChatGLM-6B 模型文件 15GB)。


为了应对上述场景,函数实例按照弹性规则,可以分为按量和预留两种模式。上述根据请求量弹出的实例我们称为按量实例。与之对应的,可以为函数配置弹性规则,增加预留模式[6]的实例。预留实例由函数计算平台预先创建,属于常驻资源,可用于平缓突发请求产生的时延毛刺。


FC 按量模式与预留模式的差异:


FC 按量模式为通过请求自动触发实例的创建,首次发起调用时,需要等待实例冷启动。如果您希望消除冷启动延时的影响,可以通过配置 FC 预留模式来解决。

FC 预留模式是将函数实例的分配和释放交由您管理,当配置预留函数实例后,预留的函数实例将会常驻,直到您主动将其释放。


在控制台中,可以在函数详情的“弹性管理”选项卡配置弹性规则。如下图示例,最小实例数即预留实例数,最大实例数与最小实例数之差即按量实例数的上限(避免弹出资源太多,控制成本上限)。弹性管理的配置方法详见文档[7]


例如:可以通过如下操作指导,预留指定数量的 GPU 实例(测试目的:一般建议预留 1 个 GPU 实例)。



  • 切换至函数的弹性管理 Tab 页



  • 设置函数的 LATEST 版本,至少预留 1 个 GPU 实例



  • 查看当前预留实例数量,是否满足目标预留实例数量。(上图表明完成指定数量的 GPU 实例预留)
  • 当预留实例就绪后,推理请求调用会被优先分配至该预留实例上执行,从而规避按量场景下的冷启动。
  • 小明可以通过请求级别的日志观测,来查看请求是由按量实例服务、还是预留实例服务。





  • 通过删除弹性规则,可以删除对应预留实例。
  • 注意:预留实例的生命周期,完全由小明全权负责。


小明想实现类似 MidJourney 异步调用效果,应该如何做呢?


类似于 StableDiffusion 的 AIGC 生图场景,Midjourney 提供了非常好的异步队列效果,基于函数计算如何实现呢?函数计算同时提供同步调用、异步调用、异步任务三种处理能力。


  • 同步调用:
  • 当您同步调用一个函数时,事件将直接触发函数,函数计算会运行该函数并等待响应。当函数调用完成后,函数计算会将执行结果直接返回给您,例如返回结果、执行摘要和日志输出。
  • 详细文档:链接[8]
  • 异步调用:
  • 函数计算系统接收异步调用请求后,将请求持久化后会立即返回响应,而不是等待请求执行完成后再返回。函数计算保证请求至少执行一次。
  • 详细文档:链接[9]
  • 异步任务:
  • 当您对函数发起异步调用时,相关请求会被持久化保存到函数计算内部队列中,然后被可靠地处理。如果您想追踪并保存异步调用各个阶段的状态,实现更丰富的任务控制和可观测能力,可以选择开启任务模式处理异步请求。
  • 详细文档:链接[10]



当函数计算的异步调用能力与 GPU 相较合时(详细文档:链接[11]),小明可以很轻松的实现 AIGC 异步排队处理的良好用户体验。


小明发现模型/应用有问题,如何定位?


a. 可观测:配置 SLS 日志

SLS 是阿里云提供的日志类数据一站式服务。我们可以通过在函数对应的服务中配置 SLS 日志项目和日志库,函数实例执行过程中的输出就可以记录到配置的日志库中。之后可以通过函数计算控制台、 SLS 的控制台都可以对这些内容进行查看。


函数计算服务配置日志的详细内容,请见文档[12]。以下给出简要步骤。


1. 在服务配置中确认日志功能已启用。



2. 在函数详情中,“调用日志”选项卡查看函数维度的日志、请求维度的日志、容器实例维度的日志。




b. 可观测:如何查看监控

函数计算平台记录了多个层次的监控指标,我们可以通过控制台进行查询。


一方面,我们可以通过控制台左侧“高级功能”、“监控大盘”进入,在大盘页面下方依次选择服务名称、函数名称,查看不同层次的监控汇总信息。有关监控指标详细信息请见文档[13]



另一方面,我们可以在函数详情“监控指标”选项卡中,直接对函数自身相关的指标进行查看。



最后,我们可以在函数详情“调用日志”选项卡中,查看函数运行的相关日志。



c. 可观测:如何命令行调试

我们也可以通过函数计算控制台函数详情的“实例列表”选项卡,使用“登录实例”功能进入到函数实例里面,通过直接的交互对执行环境、函数行为进行调试。



如果当前“实例列表”为空,可以通过测试调用触发函数计算平台新弹出一个实例。



登陆 GPU 实例后,小明就可以执行相关的 shell 命令了#


Tips:需要注意的是,登录实例的过程中,函数实例处于活跃状态,和调用函数采用相同的计量规则。为避免忘记关闭会话而意外产生费用,通过控制台进行命令行操作时,会话默认会在空闲 10 分钟之后断开连接。如有需要,可以通过执行例如 top 来进行保活。


小明想让模型跑在不同的 CPU/GPU 上,在 FC 上应如何设置呢?


如果我们通过监控指标发现函数实例的资源使用较为饱和或者空闲,可以在“函数配置”选项卡上,对函数的资源规格进行配置,包括 CPU/磁盘/内存/显存等。


特别地,对于 GPU 函数,我们可以通过切换 GPU 卡型,还提升单个函数实例最大可配置的显存大小(T4 最大 16GB,A10 最大 24GB)。关于 GPU 函数的更多信息,可见文档[14]


1. 查看函数当前配置



2. 编辑函数基础信息



小明调优后的模型可以批量推理,在 FC 上应该如何设置呢?


函数计算平台在收到一个推理调用请求后,会判断现有函数容器实例的并发度是否够用,决定是否将该推理调用请求转发给现有函数容器实例来处理,还是新弹出一个函数容器实例处理该请求。


单个函数容器实例同时能处理的调用请求数为函数实例的并发度[15]。如果应用本身能够同时处理多个请求,相比默认的 1 并发度,可以减少函数的冷启动次数。建议根据不同应用场景的需要,选择不同的并发度配置。


  • 计算密集型的推理应用:建议 GPU 函数实例的并发度保持默认值 1。
  • 支持请求批量聚合的推理应用:建议 GPU 函数实例的并发度根据能同时聚合的推理请求数量进行设置,以便批量推理。


我们可以在编辑函数的“基础信息”过程中,调整函数实例的并发度。



特别地,对于 GPU 函数,默认情况下,无论 Tesla 系列 T4 卡型、还是 Ampere 系列 A10 卡型的 GPU 实例,单个阿里云账号地域级别的 GPU 物理卡上限为 10 卡(示例请见文档[16])。在高并发场景下,如您有更高的物理卡需求,请加入钉钉用户群(钉钉群号:11721331)申请。


函数计算 FC小明完成了函数计算新手村课程,对小明还有其他嘱咐嘛?


  • GPU 实例 FAQ[17]
  • GPU 函数镜像使用说明[18]
  • GPU 应用场景使用说明[19]


相关链接:

[1] SwingDeploy

https://www.modelscope.cn/docs/%E9%83%A8%E7%BD%B2FC?spm=a2c6h.13046898.publish-article.20.210e6ffavCYCyQ

[2] 函数计算控制台

https://account.aliyun.com/login/login.htm?oauth_callback=https%3A%2F%2Ffcnext.console.aliyun.com%2Foverview%3Fspm%3Da2c6h.13046898.publish-article.22.210e6ffavCYCyQ&lang=zh

[3] 链接

https://www.devsapp.cn/details.html?name=start-modelscope

[4] 触发器

https://help.aliyun.com/zh/fc/trigger-overview

[5] 使用文档

https://help.aliyun.com/zh/fc/configure-an-http-trigger-that-invokes-a-function-with-http-requests

[6] 预留模式

https://help.aliyun.com/zh/fc/configure-provisioned-instances-and-auto-scaling-rules#section-cra-c7p-wbo

[7] 文档

https://help.aliyun.com/zh/fc/configure-provisioned-instances-and-auto-scaling-rules#section-7v8-a44-j5q

[8] 链接

https://help.aliyun.com/zh/fc/user-guide/synchronous-invocations

[9] 链接

https://help.aliyun.com/zh/fc/user-guide/overview-34

[10] 链接

https://help.aliyun.com/zh/fc/overview-25

[11] 链接

https://help.aliyun.com/zh/fc/use-cases/offline-asynchronous-task-scenarios

[12] 文档

https://help.aliyun.com/zh/fc/user-guide/configure-the-logging-feature

[13] 文档

https://help.aliyun.com/zh/fc/user-guide/configure-the-logging-feature

[14] 文档

https://help.aliyun.com/zh/fc/use-cases/introduction-to-serverless-gpus

[15] 函数实例的并发度

https://help.aliyun.com/zh/fc/configure-instance-concurrency

[16] 文档

https://help.aliyun.com/zh/fc/use-cases/quasi-real-time-inference-scenarios#p-p53-jwq-172

[17] GPU 实例 FAQ

https://help.aliyun.com/zh/fc/support/faq-about-gpu-accelerated-instances

[18] GPU 函数镜像使用说明

https://help.aliyun.com/zh/fc/use-cases/image-usage-notes

[19] GPU 应用场景使用说明

https://help.aliyun.com/zh/fc/use-cases/scenarios/

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
3月前
|
人工智能 运维 Serverless
0 代码,一键部署 Qwen3
依托于阿里云函数计算 FC 算力,Serverless + AI 开发平台 FunctionAI 现已提供模型服务、应用模版两种部署方式辅助您部署 Qwen3 系列模型。完成模型部署后,您即可与模型进行对话体验;或以 API 形式进行调用,接入 AI 应用中,欢迎您立即体验。
|
4月前
|
人工智能 并行计算 持续交付
如何使用龙蜥衍生版KOS,2步实现大模型训练环境部署
大幅降低了用户开发和应用大模型的技术门槛。
|
4月前
|
人工智能 弹性计算 自然语言处理
从0到1部署大模型,计算巢模型市场让小白秒变专家
阿里云计算巢模型市场依托阿里云弹性计算资源,支持私有化部署,集成通义千问、通义万象、Stable Diffusion等领先AI模型,覆盖大语言模型、文生图、多模态、文生视频等场景。模型部署在用户云账号下,30分钟极速上线,保障数据安全与权限自主控制,适用于企业级私有部署及快速原型验证场景。
|
4月前
|
数据采集 机器学习/深度学习 搜索推荐
利用通义大模型构建个性化推荐系统——从数据预处理到实时API部署
本文详细介绍了基于通义大模型构建个性化推荐系统的全流程,涵盖数据预处理、模型微调、实时部署及效果优化。通过采用Qwen-72B结合LoRA技术,实现电商场景下CTR提升58%,GMV增长12.7%。文章分析了特征工程、多任务学习和性能调优的关键步骤,并探讨内存优化与蒸馏实践。最后总结了大模型在推荐系统中的适用场景与局限性,提出未来向MoE架构和因果推断方向演进的建议。
675 10
|
4月前
|
存储 文字识别 自然语言处理
通义大模型在文档自动化处理中的高效部署指南(OCR集成与批量处理优化)
本文深入探讨了通义大模型在文档自动化处理中的应用,重点解决传统OCR识别精度低、效率瓶颈等问题。通过多模态编码与跨模态融合技术,通义大模型实现了高精度的文本检测与版面分析。文章详细介绍了OCR集成流程、批量处理优化策略及实战案例,展示了动态批处理和分布式架构带来的性能提升。实验结果表明,优化后系统处理速度可达210页/分钟,准确率达96.8%,单文档延迟降至0.3秒,为文档处理领域提供了高效解决方案。
507 0
|
25天前
|
缓存 API 调度
70_大模型服务部署技术对比:从框架到推理引擎
在2025年的大模型生态中,高效的服务部署技术已成为连接模型能力与实际应用的关键桥梁。随着大模型参数规模的不断扩大和应用场景的日益复杂,如何在有限的硬件资源下实现高性能、低延迟的推理服务,成为了所有大模型应用开发者面临的核心挑战。
|
25天前
|
监控 安全 数据安全/隐私保护
55_大模型部署:从云端到边缘的全场景实践
随着大型语言模型(LLM)技术的飞速发展,从实验室走向产业化应用已成为必然趋势。2025年,大模型部署不再局限于传统的云端集中式架构,而是向云端-边缘协同的分布式部署模式演进。这种转变不仅解决了纯云端部署在延迟、隐私和成本方面的痛点,还为大模型在各行业的广泛应用开辟了新的可能性。本文将深入剖析大模型部署的核心技术、架构设计、工程实践及最新进展,为企业和开发者提供从云端到边缘的全场景部署指南。
|
25天前
|
人工智能 监控 安全
06_LLM安全与伦理:部署大模型的防护指南
随着大型语言模型(LLM)在各行业的广泛应用,其安全风险和伦理问题日益凸显。2025年,全球LLM市场规模已超过6400亿美元,年复合增长率达30.4%,但与之相伴的是安全威胁的复杂化和伦理挑战的多元化
|
1月前
|
人工智能 云栖大会
2025云栖大会大模型应用开发与部署|门票申领
2025云栖大会大模型应用开发与部署门票申领
128 1

相关产品

  • 函数计算