Linux服务器百万并发实现与问题排查

简介: Linux服务器百万并发实现与问题排查

前言

  实现一台服务器的百万并发,服务器支撑百万连接会出现哪些问题,如何排查与解决这些问题 是本文的重点

  • 服务器能够同时建立连接的数量 不是 并发量,它只是并发量一个基础。
  • 服务器的并发量:一个服务器能够同时承载客户端的数量;
  • 承载:服务器能够稳定的维持这些连接,能够响应请求,在200ms内返回响应就认为是ok的,其中这200ms包括数据库的操作,网络带宽,内存操作,日志等时间。

  本专栏知识点是通过零声教育的线上课学习,进行梳理总结写下文章,对c/c++linux课程感兴趣的读者,可以点击链接 C/C++后台高级服务器课程介绍 详细查看课程的服务。

测试介绍

 服务器 采用 1台 centos7 12G 1核虚拟机


 客户端 采用 2台 centos7 3G 1核虚拟机


 服务器代码:单reactor单线程,IO多路复用使用epoll


 客户端代码:IO多路复用使用epoll,每个客户端发51w个连接,每个连接发送一次数据,读取一次数据之后不再发送数据

服务器代码

  由于fd的数量未知,这里设计ntyreactor 里面包含 eventblock ,eventblock 包含1024个fd。每个fd通过 fd/1024定位到在第几个eventblock,通过fd%1024定位到在eventblock第几个位置。

struct ntyevent {
    int fd;
    int events;
    void *arg;
    NCALLBACK callback;
    int status;
    char buffer[BUFFER_LENGTH];
    int length;
};
struct eventblock {
    struct eventblock *next;
    struct ntyevent *events;
};
struct ntyreactor {
    int epfd;
    int blkcnt;
    struct eventblock *evblk;
};

客户端代码

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <errno.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <fcntl.h>
#include <sys/time.h>
#include <unistd.h>
#define MAX_BUFFER    128
#define MAX_EPOLLSIZE (384*1024)
#define MAX_PORT    100
#define TIME_SUB_MS(tv1, tv2)  ((tv1.tv_sec - tv2.tv_sec) * 1000 + (tv1.tv_usec - tv2.tv_usec) / 1000)
int isContinue = 0;
static int ntySetNonblock(int fd) {
  int flags;
  flags = fcntl(fd, F_GETFL, 0);
  if (flags < 0) return flags;
  flags |= O_NONBLOCK;
  if (fcntl(fd, F_SETFL, flags) < 0) return -1;
  return 0;
}
static int ntySetReUseAddr(int fd) {
  int reuse = 1;
  return setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&reuse, sizeof(reuse));
}
int main(int argc, char **argv) {
  if (argc <= 2) {
    printf("Usage: %s ip port\n", argv[0]);
    exit(0);
  }
  const char *ip = argv[1];
  int port = atoi(argv[2]);
  int connections = 0;
  char buffer[128] = {0};
  int i = 0, index = 0;
  struct epoll_event events[MAX_EPOLLSIZE];
  int epoll_fd = epoll_create(MAX_EPOLLSIZE);
  strcpy(buffer, " Data From MulClient\n");
  struct sockaddr_in addr;
  memset(&addr, 0, sizeof(struct sockaddr_in));
  addr.sin_family = AF_INET;
  addr.sin_addr.s_addr = inet_addr(ip);
  struct timeval tv_begin;
  gettimeofday(&tv_begin, NULL);
  while (1) {
    if (++index >= MAX_PORT) index = 0;
    struct epoll_event ev;
    int sockfd = 0;
    if (connections < 340000 && !isContinue) {
      sockfd = socket(AF_INET, SOCK_STREAM, 0);
      if (sockfd == -1) {
        perror("socket");
        goto err;
      }
      //ntySetReUseAddr(sockfd);
      addr.sin_port = htons(port+index);
      if (connect(sockfd, (struct sockaddr*)&addr, sizeof(struct sockaddr_in)) < 0) {
        perror("connect");
        goto err;
      }
      ntySetNonblock(sockfd);
      ntySetReUseAddr(sockfd);
      sprintf(buffer, "Hello Server: client --> %d\n", connections);
      send(sockfd, buffer, strlen(buffer), 0);
      ev.data.fd = sockfd;
      ev.events = EPOLLIN | EPOLLOUT;
      epoll_ctl(epoll_fd, EPOLL_CTL_ADD, sockfd, &ev);
      connections ++;
    }
    //connections ++;
    if (connections % 1000 == 999 || connections >= 340000) {
      struct timeval tv_cur;
      memcpy(&tv_cur, &tv_begin, sizeof(struct timeval));
      gettimeofday(&tv_begin, NULL);
      int time_used = TIME_SUB_MS(tv_begin, tv_cur);
      printf("connections: %d, sockfd:%d, time_used:%d\n", connections, sockfd, time_used);
      int nfds = epoll_wait(epoll_fd, events, connections, 100);
      for (i = 0;i < nfds;i ++) {
        int clientfd = events[i].data.fd;
        if (events[i].events & EPOLLOUT) {
          sprintf(buffer, "data from %d\n", clientfd);
          send(sockfd, buffer, strlen(buffer), 0);
        } else if (events[i].events & EPOLLIN) {
          char rBuffer[MAX_BUFFER] = {0};       
          ssize_t length = recv(sockfd, rBuffer, MAX_BUFFER, 0);
          if (length > 0) {
            printf(" RecvBuffer:%s\n", rBuffer);
            if (!strcmp(rBuffer, "quit")) {
              isContinue = 0;
            }
          } else if (length == 0) {
            printf(" Disconnect clientfd:%d\n", clientfd);
            connections --;
            close(clientfd);
          } else {
            if (errno == EINTR) continue;
            printf(" Error clientfd:%d, errno:%d\n", clientfd, errno);
            close(clientfd);
          }
        } else {
          printf(" clientfd:%d, errno:%d\n", clientfd, errno);
          close(clientfd);
        }
      }
    }
    usleep(1 * 1000);
  }
  return 0;
err:
  printf("error : %s\n", strerror(errno));
  return 0;
}

error : Too many open files

确定问题

  程序执行到一半,创建了1023个连接后,报错Too many open files

//服务端
new connect [192.168.109.101:36994], pos[1019]
new connect [192.168.109.101:55832], pos[1020]
new connect [192.168.109.101:43460], pos[1021]
new connect [192.168.109.101:59938], pos[1022]
new connect [192.168.109.101:46098], pos[1023]
accept: Too many open files
accept: Too many open files
//客户端
connect: Connection refused
error : Connection refused

  怀疑是文件系统默认允许打开文件描述符数量个数(默认1024)的限制,使用ulimit -a查看open files的数量

  • open files:一个进程能够打开文件描述符的数量
[root@master temp]# ulimit -a
core file size          (blocks, -c) 0
data seg size           (kbytes, -d) unlimited
scheduling priority             (-e) 0
file size               (blocks, -f) unlimited
pending signals                 (-i) 47748
max locked memory       (kbytes, -l) 64
max memory size         (kbytes, -m) unlimited
open files                      (-n) 1024
pipe size            (512 bytes, -p) 8
POSIX message queues     (bytes, -q) 819200
real-time priority              (-r) 0
stack size              (kbytes, -s) 8192
cpu time               (seconds, -t) unlimited
max user processes              (-u) 47748
virtual memory          (kbytes, -v) unlimited
file locks                      (-x) unlimited

  那么我们把open files调大一点点,看是否会停在2047,如果是,则说明问题就是open files太小的问题,实验发现就是这个原因。

[root@master temp]# ulimit -n 2048
[root@master temp]# ulimit -a
core file size          (blocks, -c) 0
data seg size           (kbytes, -d) unlimited
scheduling priority             (-e) 0
file size               (blocks, -f) unlimited
pending signals                 (-i) 47748
max locked memory       (kbytes, -l) 64
max memory size         (kbytes, -m) unlimited
open files                      (-n) 2048
pipe size            (512 bytes, -p) 8
POSIX message queues     (bytes, -q) 819200
real-time priority              (-r) 0
stack size              (kbytes, -s) 8192
cpu time               (seconds, -t) unlimited
max user processes              (-u) 47748
virtual memory          (kbytes, -v) unlimited
file locks                      (-x) unlimited
new connect [192.168.109.101:53996], pos[2046]
new connect [192.168.109.101:60742], pos[2047]
accept: Too many open files

解决问题

  1. 临时修改,只在当前这个会话有效:ulimit -n 1048576
  2. 永久修改,对所有会话有效:添加下面两行代码

注意这里修改的是:一个进程能够打开文件描述符的数量

[root@master temp]# vim /etc/security/limits.conf
# 修改
[root@master temp]# reboot
# 重启生效
*               soft    nofile          1048576
*               hard    nofile          1048576
  • 软限制:超出软限制会发出警告
  • 硬限制:绝对限制,在任何情况下都不允许用户超过这个限制

 这里还需要注意一点:file-max : 系统一共可以打开的最大文件数(所有进程加起来)

[root@master temp]# cat /proc/sys/fs/file-max
1202172
# 编辑内核参数配置文件
vim /etc/sysctl.conf
# 修改fs.file-max参数
fs.file-max = 1048576
# 重新加载配置文件
sysctl -p

 另外这里建议ulimit -n 和limits.conf里nofile 设定最好不要超过/proc/sys/fs/file-max的值(虽然我测试了超过也没关系),这个小问题仁者见仁智者见智了,网上找到比较好的文章是这篇linux最大文件句柄数量之(file-max ulimit -n limit.conf)

error : Cannot assign requested address

确定问题

 现在的环境背景:服务器只开放一个端口,客户端不断的去请求去连接。然后客户端error : Cannot assign requested address


 Cannot assign requested address这代表着客户端端口耗尽,我们先来看看如何确定一个fd,反过来说一个fd代表着什么

  socket fd --- < 源IP地址 , 源端口 , 目的IP地址 , 目的端口 , 协议 > 一个fd就是一个五元组,在现在的环境中,五元组里面确定了四个,所以最多创建 1 * 源端口 * 1 * 1 * 1个fd

# 服务端
new connect [192.168.109.101:57921], pos[28234]
new connect [192.168.109.101:57923], pos[28235]
send[fd=21003] error Connection reset by peer
send[fd=22003] error Connection reset by peer
# 客户端
connections: 26999, sockfd:27002, time_used:2399
connections: 27999, sockfd:28002, time_used:2404
connect: Cannot assign requested address
error : Cannot assign requested address

 我们看到大概创建了2.8w的fd , 可是我们知道端口一个有6w多个,也就是说有6w个端口,为什么我们只使用了2.8w个?


 Linux中有限定端口的使用范围:60999 - 32768 = 2.8w ,与我们上面实验结果相符。


The /proc/sys/net/ipv4/ip_local_port_range defines the local port range that is used by TCP and UDP traffic to choose the local port. You will see in the parameters of this file two numbers: The first number is the first local port allowed for TCP and UDP traffic on the server, the second is the last local port number. For high-usage systems you may change its default parameters to 32768-61000 -first-last.


proc/sys/net/ipv4/ip_local_port_range范围定义TCP和UDP通信用于选择本地端口的本地端口范围。您将在该文件的参数中看到两个数字:第一个数字是服务器上允许TCP和UDP通信的第一个本地端口,第二个是最后一个本地端口号。对于高使用率的系统,您可以将其默认参数更改为32768-61000(first-last)。

[root@master temp]# sysctl net.ipv4.ip_local_port_range
net.ipv4.ip_local_port_range = 32768  60999

解决问题

  1. 修改net.ipv4.ip_local_port_range的范围,一般不这样做,我们这里研究的是服务器,怎么会去对客户端进行修改呢
  2. 之前已经说了这个问题的背景,就是只开放了一个端口,并且socket fd --- < 源IP地址 , 源端口, 目的IP地址 , 目的端口 , 运输层协议 >,在这个背景下才产生的这个问题,所以我们可以开放更多的端口,比如说100个,那么一个客户端就能连到280w了

error : Connection timed out

确定问题

  我们将服务器端口开100个,按理说客户端可以连280w,但是现在只连接到13w就error : Connection timed out,与我们的预期不符

//服务端
new connect [192.168.109.101:54585], pos[131165]
new connect [192.168.109.101:48265], pos[131166]
new connect [192.168.109.101:51997], pos[131167]
new connect [192.168.109.101:43239], pos[131168]
send[fd=20102] error Connection reset by peer
send[fd=21102] error Connection reset by peer
send[fd=22102] error Connection reset by peer
//客户端
connections: 127999, sockfd:128002, time_used:7576
connections: 128999, sockfd:129002, time_used:2683
connections: 129999, sockfd:130002, time_used:2669
connections: 130999, sockfd:131002, time_used:4610
connect: Connection timed out
error : Connection timed out

 网卡接收的数据,会发送到协议栈里面,通过sk_buff将数据传到协议栈,协议栈处理完再交给应用程序。由于操作系统在使用的时候,为防止被攻击,在数据发送给协议栈之前进行一个过滤,在协议栈前面加了一个小组件:过滤器,叫做netfilter。

 netfilter主要是对网络数据包进行一个过滤,在netfilter的基础上我们就可以实现防火墙,在linux里面有一个就叫做iptables,iptables是基于netfilter做的,iptables分为两部分,一部分是内核实现的netfilter接口,一部分是应用程序提供给用户使用的。iptables真正实现的是netfilter提供的接口。

  Connection timed out译为连接超时,也就是说,client发送的请求超时了,那么这个超时有两种情况,第一种:三次握手第一次的SYN没发出去,第二种:三次握手第二次ACK没收到。

  netfilter不管对发送的数据,还是对接收的数据,都是可以过滤的。当连接数量达到一定数量的时候,netfilter就会不允许再对外发连接了。所以现在推测是情况1造成的,发送的SYN被netfilter拦截了。

  事实是这样吗,我们来查看一下netfilter允许对外最大连接数量是多少。13w,与我们上面建立成功的数量一致,所以现在就可以确定是netfilter允许对外开放的最大连接数造成的了

[root@node1 temp]# cat /proc/sys/net/netfilter/nf_conntrack_max
131072

解决问题

  我们可以通过设置netfilter允许对外最大连接数量,来解决这个问题

# 查看允许对外最大连接数量
[root@node1 temp]# cat /proc/sys/net/netfilter/nf_conntrack_max
131072
# 进行配置
vim /etc/sysctl.conf
# 在配置文件中把net.nf_conntrack_max参数修改为1048576(如果配置就自己添加一行)
net.nf_conntrack_max = 1048576
# 重新加载配置文件
sysctl -p
# 再次查看,发现生效了
[root@node1 temp]# cat /proc/sys/net/netfilter/nf_conntrack_max
1048576

killed(已杀死)

确定问题

  这里我们先给客户端虚拟机2G的内存,然后发现到24w的时候,客户端进程被杀死了

connections: 239999, sockfd:240002, time_used:9837
connections: 240999, sockfd:241002, time_used:10608
connections: 241999, sockfd:242002, time_used:13109
connections: 242999, sockfd:243002, time_used:15112
connections: 243999, sockfd:244002, time_used:12606
已杀死

  我们来看一下kill记录,发现是内存不足。

[root@node1 ~]# dmesg | egrep -i -B100 'killed process'
[ 2310.265218] Out of memory: Kill process 7266 (C1000Kclient) score 1 or sacrifice child
[ 2310.265962] Killed process 7266 (C1000Kclient) total-vm:8708kB, anon-rss:2960kB, file-rss:0kB, shmem-rss:0kB

  这里直接说原因吧,是因为程序每个fd都有一个tcp接收缓冲区和tcp发送缓冲区。而默认的太大了,导致Linux内存不足,进程被杀死,所有我们需要适当的缩小。进程空间,代码段,堆栈都是要占用内存的。

解决问题

  我们只需要对net.ipv4.tcp_mem,net.ipv4.tcp_wmem,net.ipv4.tcp_rmem进行适合的修改即可

# 编辑内核参数配置文件
vim /etc/sysctl.conf
# 添加以下内容
#           最小值   默认值   最大值
net.ipv4.tcp_mem = 252144 524288 786432 # tcp协议栈的大小,单位为内存页(4K),分别是 1G 2G 3G,如果大于2G,tcp协议栈会进行一定的优化
net.ipv4.tcp_wmem = 1024 1024 2048 # tcp接收缓存区(用于tcp接受滑动窗口)的最小值,默认值和最大值(单位byte)1k 1k 2k,每一个连接fd都有一个接收缓存区
net.ipv4.tcp_rmem = 1024 1024 2048 # tcp发送缓存区(用于tcp发送滑动窗口)的最小值,默认值和最大值(单位byte)1k 1k 2k,每一个连接fd都有一个发送缓存区
# 总缓存 = (每个fd发送缓存区 + 每个fd接收缓存区) * fd数量
# (1024byte + 1024byte ) * 100w 约等于 2G

  如果服务器是用来接收大文件,传输量很大的时候,就要把send buffer和read buffer调大。

  如果服务器只是接收小数据字符的时候。把buffer调小是为了把fd的数量做到更多,并发数量能做到更大。如果buffer调大的话,内存会不够。

百万并发测试结果

出现的问题总结

 想要实现服务器百万并发:

  1. 一个进程能够打开文件描述符的数量open files 和 file-max 改成100w以上
  2. 在不同的环境下要看开放的端口够不够socket fd --- < 源IP地址 , 源端口 , 目的IP地址 , 目的端口 , 协议 >
  3. 设置netfilter允许对外最大连接数量100w以上
  4. 根据内存和场景,适当调整net.ipv4.tcp_mem,net.ipv4.tcp_wmem,net.ipv4.tcp_rmem
目录
相关文章
|
15天前
|
运维 监控 Linux
推荐几个不错的 Linux 服务器管理工具
推荐几个不错的 Linux 服务器管理工具
W9
|
2月前
|
运维 关系型数据库 MySQL
轻松管理Linux服务器的5个优秀管理面板
Websoft9 应用管理平台,github 2k star 开源软件,既有200+的优秀开源软件商店,一键安装。又有可视化的Linux管理面板,文件、数据库、ssl证书方便快捷管理。
W9
131 1
|
2月前
|
缓存 Ubuntu Linux
Linux环境下测试服务器的DDR5内存性能
通过使用 `memtester`和 `sysbench`等工具,可以有效地测试Linux环境下服务器的DDR5内存性能。这些工具不仅可以评估内存的读写速度,还可以检测内存中的潜在问题,帮助确保系统的稳定性和性能。通过合理配置和使用这些工具,系统管理员可以深入了解服务器内存的性能状况,为系统优化提供数据支持。
59 4
|
2月前
|
运维 监控 Linux
服务器管理面板大盘点: 8款开源面板助你轻松管理Linux服务器
在数字化时代,服务器作为数据存储和计算的核心设备,其管理效率与安全性直接关系到业务的稳定性和可持续发展。随着技术的不断进步,开源社区涌现出众多服务器管理面板,这些工具以其强大的功能、灵活的配置和友好的用户界面,极大地简化了Linux服务器的管理工作。本文将详细介绍8款开源的服务器管理面板,包括Websoft9、宝塔、cPanel、1Panel等,旨在帮助运维人员更好地选择和使用这些工具,提升服务器管理效率。
|
1月前
|
存储 Oracle 安全
服务器数据恢复—LINUX系统删除/格式化的数据恢复流程
Linux操作系统是世界上流行的操作系统之一,被广泛用于服务器、个人电脑、移动设备和嵌入式系统。Linux系统下数据被误删除或者误格式化的问题非常普遍。下面北亚企安数据恢复工程师简单聊一下基于linux的文件系统(EXT2/EXT3/EXT4/Reiserfs/Xfs) 下删除或者格式化的数据恢复流程和可行性。
|
2月前
|
安全 Linux API
Linux服务器安全
人们常误认为服务器因存于数据中心且数据持续使用而无需加密。然而,当驱动器需维修或处理时,加密显得尤为重要,以防止数据泄露。Linux虽有dm-crypt和LUKS等内置加密技术,但在集中管理、根卷加密及合规性等方面仍存不足。企业应选择具备强大验证、简单加密擦除及集中管理等功能的解决方案,以弥补这些缺口。
37 0
|
2月前
|
Linux 网络安全 数据安全/隐私保护
Linux 超级强大的十六进制 dump 工具:XXD 命令,我教你应该如何使用!
在 Linux 系统中,xxd 命令是一个强大的十六进制 dump 工具,可以将文件或数据以十六进制和 ASCII 字符形式显示,帮助用户深入了解和分析数据。本文详细介绍了 xxd 命令的基本用法、高级功能及实际应用案例,包括查看文件内容、指定输出格式、写入文件、数据比较、数据提取、数据转换和数据加密解密等。通过掌握这些技巧,用户可以更高效地处理各种数据问题。
183 8
|
2月前
|
监控 Linux
如何检查 Linux 内存使用量是否耗尽?这 5 个命令堪称绝了!
本文介绍了在Linux系统中检查内存使用情况的5个常用命令:`free`、`top`、`vmstat`、`pidstat` 和 `/proc/meminfo` 文件,帮助用户准确监控内存状态,确保系统稳定运行。
734 6
|
2月前
|
Linux
在 Linux 系统中,“cd”命令用于切换当前工作目录
在 Linux 系统中,“cd”命令用于切换当前工作目录。本文详细介绍了“cd”命令的基本用法和常见技巧,包括使用“.”、“..”、“~”、绝对路径和相对路径,以及快速切换到上一次工作目录等。此外,还探讨了高级技巧,如使用通配符、结合其他命令、在脚本中使用,以及实际应用案例,帮助读者提高工作效率。
121 3
|
1月前
|
Linux Shell
Linux 10 个“who”命令示例
Linux 10 个“who”命令示例
65 14
Linux 10 个“who”命令示例