[mysql 基于C++实现数据库连接池 连接池的使用] 持续更新中

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: [mysql 基于C++实现数据库连接池 连接池的使用] 持续更新中

目背景

常见的MySQL、Oracle、SQLServer等数据库都是基于C/S架构设计的,即(客户端/服务器)架构,也就是说我们对数据库的操作相当于一个客户端,这个客户端使用既定的API把SQL语句通过网络发送给服务器端,MySQL Server执行完SQL语句后将结果通过网络返回客户端。通过网络通信的话就要涉及到TCP/IP协议里的“三次握手”、“四次挥手”等,大量访问时,每一个用户的请求都会对应一次“三次握手”、“四次挥手”的过程,这个性能的消耗是相当严重的;

对于数据库本质上是对磁盘的操作,如果对数据库的访问过多,即(I/O)操作过多,会出现访问瓶颈。

而常见的解决数据库访问瓶颈的方法有两种:

一、为减少磁盘 I/O的次数,在数据库和服务器的应用中间加一层 缓存数据库(例如:Redis、Memcache);

二、增加 连接池,来减少高并发情况下大量 TCP三次握手、MySQL Server连接认证、MySQL Server关闭连接回收资源和TCP四次挥手 所耗费的性能。

mysqlconn.hpp 实现连接 增删改查操作

#include <mysql/mysql.h>
#include <iostream>
#include <string>
#include <ctime>
#include <chrono>
#include <memory> 
#define INFO    1
#define WARNING 2
#define ERROR   3
#define FATAL   4
#define LOG(level, message) Log(#level, message, __FILE__, __LINE__)
void Log(std::string level, std::string message, std::string file_name, int line)
{
  std::cout<<"["<<level<<"]["<<time(nullptr)<<"]["<<message<<"]["<<file_name<<"]["<<line<<"]"<<std::endl;
}
class mysqlconn{
private:
  MYSQL *m_conn = nullptr;
  MYSQL_RES* m_res = nullptr;//查询结果集
  MYSQL_ROW m_row;//记录结构体
  void freeResult()
  {
      if(m_res)
      {
          mysql_free_result(m_res);
          m_res = nullptr;
      }
  }
  std::chrono::steady_clock::time_point m_aliveTime;
public:
  mysqlconn()
  {
    //获取一个MYSQL句柄
    m_conn = mysql_init(nullptr);
    //设置字符集
    mysql_set_character_set(m_conn,"utf8");
  }
  ~mysqlconn()
  {
    freeResult();
    if(m_conn != nullptr)
      {
          mysql_close(m_conn);
      }
  }
  bool query(std::string sql){
    freeResult();
    if(mysql_query(m_conn, sql.c_str())){
      return false;
    }
    m_res = mysql_store_result(m_conn);
    return true;
  }
  //更新 修改 删除
  bool update(std::string sql){
    return mysql_query(m_conn, sql.c_str());
  }
  //连接指定的数据库
    bool connect(std::string ip, std::string user, std::string passwd, std::string dbName,  unsigned int port)
    {
      return mysql_real_connect(m_conn, ip.c_str(), user.c_str(), passwd.c_str(), dbName.c_str(), port,nullptr,0) != nullptr;
  }
      //遍历得到的结果集
    bool next()
    {
    if(m_res != nullptr)
      {
          m_row = mysql_fetch_row(m_res);  //获取一行
          if(m_row != nullptr)
          {
              return true;
          }
      }
      return false;
  }
    //获取结果集里的值
    std::string value(int index){
      int rowCount = mysql_num_fields(m_res);  //返回结果集中字段数目
      if(index >= rowCount || index < 0)
      {
          return std::string();
      }
      char* ans = m_row[index];
      unsigned long length = mysql_fetch_lengths(m_res)[index];
      return std::string(ans,length);   
  }
    //事务处理提交方式
    bool transaction()
  {
    return mysql_autocommit(m_conn,false);
  }
    //事务提交
    bool commit()
    {
      return mysql_commit(m_conn);
  }
    //事务回滚
    bool rollback()
  {
    return mysql_rollback(m_conn);
  }
    //更新空闲时间点
    void refreshAliveTime(){
    m_aliveTime = std::chrono::steady_clock::now();
  }
    //计算连接空闲时长
    long long getAliveTime()
    {
      std::chrono::duration<double> diff = std::chrono::steady_clock::now() - m_aliveTime;       //nanosecods 纳秒
      return diff.count();
  }
};

connpool.hpp 连接池

#include <mutex>
#include <condition_variable>
#include <queue>
#include <fstream>
#include <thread>
#include "mysqlconn.hpp"
class ConnectionPool
{
private:
    std::string m_user;
    std::string m_passwd;
    std::string m_ip;
    std::string m_dbName;
    unsigned short m_port;
    //连接的上限和下限,自动维护线程池的连接数
    int m_minSize;
    int m_maxSize;
    //连接的超时时长
    int m_timeout;
    int m_maxIdleTime;
    //线程同步  
    std::mutex m_mutexQ;                     //互斥锁
    std::condition_variable m_cond;          //条件变量
    std::queue<mysqlconn *> m_connectionQ;    //共享资源
public:
    //对外接口,获取线程池
    //静态局部变量是线程安全的
    static ConnectionPool  *getConnectPool()    
    {
    static ConnectionPool pool;
      return &pool;
  }
    //获取线程池中的连接
    std::shared_ptr<mysqlconn>  getConnection()
    {
    //需要操作共享资源
    std::unique_lock<std::mutex> locker(m_mutexQ);
    //判断连接池队列为空
    while(m_connectionQ.empty())
    {
      if(std::cv_status::timeout == m_cond.wait_for(locker, std::chrono::milliseconds(m_timeout)))
      {
        if(m_connectionQ.empty())
        {
          continue;
        }
      }
    }
    //自定义shared_ptr析构方法,重新将连接放回到连接池中,而不是销毁
    std::shared_ptr<mysqlconn> connptr(m_connectionQ.front(),[this](mysqlconn *conn){
    std::unique_lock<std::mutex> locker(m_mutexQ);
    conn->refreshAliveTime();
    m_connectionQ.push(conn); 
    });
    //弹出,放到了队尾
    m_connectionQ.pop();
    m_cond.notify_all();
    return connptr;
  }
    //防止外界通过拷贝构造函数和移动拷贝构造函数
    ConnectionPool(const ConnectionPool &obj) = delete;
    ConnectionPool& operator=(const ConnectionPool& obj) = delete;
    ~ConnectionPool()
  {
    while(!m_connectionQ.empty())
    {
        mysqlconn *conn = m_connectionQ.front();
        m_connectionQ.pop();
        delete conn;
    }
  }
private:
    //构造函数私有化
    ConnectionPool()
    {
    //加载配置文件
    if(!parseJsonFile())
    {
      return;
    }
    //创建最少连接数
    for(int i=0;i<m_minSize;++i)
    {
      addConnect();
    }
    //创建子线程用于检测并创建新的连接
    std::thread producer(&ConnectionPool::produceConnection,this);
    //销毁连接,检测并销毁连接
    std::thread recycler(&ConnectionPool::recycleConnection,this);
    //设置线程分离
    producer.detach();
    recycler.detach();
  }
    //解析配置文件
    bool parseJsonFile(){    //可以通过配置文件配置数据 这里写死 
    m_ip      = "127.0.0.1";
        m_user    = "pig";
        m_passwd  = "test1234";
        m_dbName  = "test";
        m_port    = 3306;
        m_minSize = 10;
        m_maxSize = 100;
        m_timeout = 10;
        m_maxIdleTime = 20;
    return true;
  }
    //任务函数
    void produceConnection()   //生产数据库连接
    {
      //通过轮询的方式不断的去检测
      while(true) 
      {
          //操作共享资源,需要加锁
          std::unique_lock<std::mutex> locker(m_mutexQ);
          //判断连接数是否达到容量,如果大于等于容量则需要阻塞一段时间
          while (m_connectionQ.size() >= m_maxSize)   
          {
             m_cond.wait(locker);
          }
          addConnect();
          m_cond.notify_all();        //唤醒消费者
      }
  }
    void recycleConnection()   //销毁数据库连接
    {
    while(true)
    {
       //休眠一定的时长
       std::this_thread::sleep_for(std::chrono::milliseconds(500));
       std::unique_lock<std::mutex> locker(m_mutexQ);
       //让线程池中最少保持用于 m_minSize个线程
       while(m_connectionQ.size() > m_minSize)
       {
            mysqlconn *recyConn = m_connectionQ.front();
            //如果超时则销毁
            if(recyConn->getAliveTime() >= m_maxIdleTime)
            {
                m_connectionQ.pop();
                delete recyConn;
            } 
            else
            {
                break;
            }
       }
      }
  }
    void addConnect()         //添加连接
    {
    mysqlconn *conn = new mysqlconn;
    conn->connect(m_ip,m_user,m_passwd,m_dbName,m_port);
      conn->refreshAliveTime();
      m_connectionQ.push(conn);
  }
};

main.cpp 测试主函数 单线程 连接池 多线程连接池

#include "connpool.hpp"
void pthread1_no_pool()
{
  clock_t begin = clock();
  std::unique_ptr<mysqlconn> sp = std::make_unique<mysqlconn>();
  bool connflag = sp->connect("127.0.0.1","pig","test1234", "test",3306);
  if(connflag == false) return;
  for (int i = 0; i < 4 * 1000; ++i)
  {
      sp->refreshAliveTime();
    char sql[1024] = { 0 };
    sprintf(sql, "insert into tb_file values('%d','%s','%s');",
      i, "pthread1_no_pool", "1.png");
    auto upflag = sp->update(sql);
  }
  clock_t end = clock();
  std::cout << "pthread1_no_pool:" << (end - begin) << "ms" << std::endl;
}
void pthread1_use_pool(){
  ConnectionPool *cp = ConnectionPool::getConnectPool();
  clock_t begin = clock();
  std::shared_ptr<mysqlconn> sp = cp->getConnection();
  for (int i = 0; i < 1000 * 4; ++i)
  {
    char sql[1024] = { 0 };
    sprintf(sql, "insert into tb_file(id, name, file) values('%d','%s','%s');",
      i, "pthread1_use_pool", "1.png");
    sp->update(sql);
  }
  clock_t end = clock();
  std::cout <<"pthread1_use_pool:" << (end - begin) << "ms" << std::endl;
}
void pthread4_no_pool()
{
  clock_t begin = clock();
  std::thread tt[4];
  for(int n = 0; n < 4; n++){
    tt[n] = std::thread([=]{
      std::unique_ptr<mysqlconn> sp = std::make_unique<mysqlconn>();
      sp->connect("127.0.0.1","pig","test1234", "test",3306);
      for (int i = 0; i < 1000 * (n + 1); ++i)
      {
          sp->refreshAliveTime();
        char sql[1024] = { 0 };
        sprintf(sql, "insert into tb_file values('%d','%s','%s');",
          i, "pthread1_no_pool", "1.png");
        sp->update(sql);
      }
    });
  }
  for(int i = 0; i < 4; i++){
    tt[i].join();
  }
  clock_t end = clock();
  std::cout <<"pthread4_no_pool:" << (end - begin) << "ms" << std::endl;
}
void work(ConnectionPool *cp , int l){
  std::shared_ptr<mysqlconn> sp = cp->getConnection();
  for (int i = l * 1000; i < 1000 * (l + 1); ++i)
  {
    char sql[1024] = { 0 };
    sprintf(sql, "insert into tb_file values('%d','%s','%s');",
      i, "pthread1_use_pool", "1.png");
    auto upflag = sp->update(sql);
    if(upflag != 0)
    {
      std::cout <<"pthread4_use_pool:" << upflag << sql << std::endl;
      continue;
    }
  }
}
void pthread4_use_pool()
{
  ConnectionPool *cp = ConnectionPool::getConnectPool();
  clock_t begin = clock();
  std::thread tt[4];
  for(int i = 0; i < 4; i++){
    tt[i] = std::thread(work, cp, i);
  }
  for(int i = 0; i < 4; i++){
    tt[i].join();
  }
  clock_t end = clock();
  std::cout <<"pthread4_use_pool:" << (end - begin) << "ms" << std::endl;
}
// g++ -o main main.cpp connpool.hpp mysqlconn.hpp -lmysqlclient -std=c++14 -lpthread
int main()
{
  /*单线程 不使用连接池*/
  //LOG(INFO, "pthread1_no_pool test:");
  //pthread1_no_pool();
  /*单线程 使用连接池*/
  //LOG(INFO, "pthread1_use_pool test:");
  //pthread1_use_pool();
  /*多线程 不使用连接池*/
  LOG(INFO, "pthread4_no_pool test:");
  pthread4_no_pool();
  /*多线程 使用连接池*/
  //LOG(INFO, "pthread4_use_pool test:");
  //pthread4_use_pool();
  return 0;
}

单线程 无连接池 4000条数据插入

单线程 连接池 4000条数据插入

4线程 无连接池

4线程 连接池

测试结果 和预期一样 多线程下使用连接池中的连接 比重复建立连接快很多

![结果](https://ucc.alicdn.com/images/user-upload-01/direct/5b15db6b9ade48b5b6f65b061a45b200.png参考

https://zhuanlan.zhihu.com/p/616675628

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
9天前
|
数据可视化 关系型数据库 MySQL
嵌入式C++、STM32、MySQL、GPS、InfluxDB和MQTT协议数据可视化
通过本文的介绍,我们详细讲解了如何结合嵌入式C++、STM32、MySQL、GPS、InfluxDB和MQTT协议,实现数据的采集、传输、存储和可视化。这种架构在物联网项目中非常常见,可以有效地处理和展示实时数据。希望本文能帮助您更好地理解和应用这些技术,构建高效、可靠的数据处理和可视化系统。
126 82
|
24天前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
11天前
|
关系型数据库 MySQL 数据库
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
82 42
|
2天前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
40 25
|
29天前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
232 0
|
2月前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
73 3
|
2天前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
1月前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
68 19
|
1月前
|
存储 编译器 数据安全/隐私保护
【C++面向对象——类与对象】CPU类(头歌实践教学平台习题)【合集】
声明一个CPU类,包含等级(rank)、频率(frequency)、电压(voltage)等属性,以及两个公有成员函数run、stop。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。​ 相关知识 类的声明和使用。 类的声明和对象的声明。 构造函数和析构函数的执行。 一、类的声明和使用 1.类的声明基础 在C++中,类是创建对象的蓝图。类的声明定义了类的成员,包括数据成员(变量)和成员函数(方法)。一个简单的类声明示例如下: classMyClass{ public: int
50 13
|
1月前
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
52 5