Modelscope-FunASR平台提供了高效的处理能力

简介: Modelscope-FunASR平台提供了高效的处理能力【1月更文挑战第11天】【1月更文挑战第51篇】

Modelscope-FunASR平台提供了高效的处理能力,无论是在CPU还是GPU环境下,都表现出了快速的推理速度。该平台能够兼容多种设备,并针对不同的硬件环境进行了优化。

GPU通常用于处理大量并行计算任务,适合于复杂的数学运算和大规模数据处理,而CPU则在顺序处理和多任务管理上具有优势。尽管GPU在特定任务上可能表现出更快的计算速度,但在实际应用中,CPU的计算效率并不总是低于GPU。

具体到FunASR,该平台使用了C++编写核心代码,利用了C++高效的执行能力和编译器优化,能够在CPU上实现快速的音频转写和其他语音处理任务。同时,FunASR也支持GPU加速,尤其在处理大规模音频数据或复杂模型时,能够显著提高推理速度。

根据您的描述,使用CPU进行3小时音频转写大约需要15分钟,而使用GPU时也大致相同。这可能是因为音频转写过程中的计算量并不大,或者CPU的配置已经足够处理这些任务,从而在没有GPU加速的情况下,也能在短时间内完成转写。此外,音频转写不仅仅是依赖硬件计算能力,还与模型结构、算法效率以及数据预处理等多种因素有关。

综上所述,FunASR在CPU上的高效表现并非单纯因为C++的高效率,而是综合了编码优化、算法效率和数据处理等多方面因素的结果。而对于是否需要使用GPU,则需根据实际任务需求、硬件配置以及性能考量来灵活选择。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
达摩院 Java 大数据
达摩院FunASR实时语音转写服务软件包发布
达摩院FunASR实时语音转写服务软件包发布
1545 0
达摩院FunASR实时语音转写服务软件包发布
|
监控 网络协议 数据安全/隐私保护
云MAS中CMPP3.0协议封装与移动短信状态报告状态码说明
云MAS中CMPP3.0协议封装与移动短信状态报告状态码说明
1389 1
|
语音技术 异构计算
FunASR项目支持实时语音识别
FunASR项目支持实时语音识别【1月更文挑战第7篇】
4250 1
|
人工智能 达摩院 并行计算
中文语音识别转文字的王者,阿里达摩院FunAsr足可与Whisper相颉顽
君不言语音识别技术则已,言则必称Whisper,没错,OpenAi开源的Whisper确实是世界主流语音识别技术的魁首,但在中文领域,有一个足以和Whisper相颉顽的项目,那就是阿里达摩院自研的FunAsr。 FunAsr主要依托达摩院发布的Paraformer非自回归端到端语音识别模型,它具有高精度、高效率、便捷部署的优点,支持快速构建语音识别服务,最重要的是,FunASR支持标点符号识别、低语音识别、音频-视觉语音识别等功能,也就是说,它不仅可以实现语音转写,还能在转写后进行标注,一石二鸟。
中文语音识别转文字的王者,阿里达摩院FunAsr足可与Whisper相颉顽
|
测试技术 语音技术
FunASR英文离线文件转写软件包问题之性能测试详细结果查看如何解决
FunASR英文离线文件转写软件包问题之性能测试详细结果查看如何解决
288 0
|
8月前
|
人工智能 自然语言处理 数据挖掘
博物馆导览系统核心功能与设计思路,提升游客体验和运营效率
博物馆导览系统通过AR、VR、大数据等技术,实现展品智能讲解、AR互动、可视化数据看板等核心功能,助力博物馆智慧化升级,提升游客体验和运营效率
561 2
|
6月前
|
机器学习/深度学习 人工智能 编解码
重定义数字人交互!OmniTalker:阿里推出实时多模态说话头像生成框架,音视频实现唇语级同步
阿里巴巴推出的OmniTalker框架通过Thinker-Talker架构实现文本驱动的实时说话头像生成,创新性采用TMRoPE技术确保音视频同步,支持流式多模态输入处理。
2397 2
重定义数字人交互!OmniTalker:阿里推出实时多模态说话头像生成框架,音视频实现唇语级同步
|
人工智能 Java 语音技术
开源上新|FunASR离线文件转写GPU软件包1.0
开源上新|FunASR离线文件转写GPU软件包1.0
|
11月前
|
边缘计算 物联网 5G
5G小基站技术:解决室内覆盖难题
【10月更文挑战第25天】
657 5
|
存储 人工智能 达摩院
FunASR 语音大模型在 Arm Neoverse 平台上的优化实践
Arm 架构的服务器通常具备低功耗的特性,能带来更优异的能效比。相比于传统的 x86 架构服务器,Arm 服务器在相同功耗下能够提供更高的性能。这对于大模型推理任务来说尤为重要,因为大模型通常需要大量的计算资源,而能效比高的 Arm 架构服务器可以提供更好的性能和效率。