学习如何使用 Python 连接 MongoDB: PyMongo 安装和基础操作教程

简介: Python 需要一个 MongoDB 驱动程序来访问 MongoDB 数据库。我将使用 MongoDB 驱动程序 PyMongo建议您使用 PIP 来安装 PyMongo。PIP 很可能已经安装在您的 Python 环境中。将命令行导航到 PIP 的位置,然后键入以下内容:

Python 可以用于数据库应用程序。最流行的 NoSQL 数据库之一是 MongoDB

MongoDB

MongoDB 将数据存储在类似 JSON 的文档中,使数据库非常灵活和可扩展。

您可以在 MongoDB 官网 上下载免费的 MongoDB 数据库

PyMongo

Python 需要一个 MongoDB 驱动程序来访问 MongoDB 数据库。我将使用 MongoDB 驱动程序 PyMongo

建议您使用 PIP 来安装 PyMongoPIP 很可能已经安装在您的 Python 环境中。将命令行导航到 PIP 的位置,然后键入以下内容:

python -m pip install pymongo

现在您已经下载并安装了一个 MongoDB 驱动程序。

测试 PyMongo

为了测试安装是否成功,或者如果您已经安装了 pymongo,请创建一个包含以下内容的 Python 页面:

demo_mongodb_test.py

import pymongo

创建数据库

要在 MongoDB 中创建数据库,首先创建一个 MongoClient 对象,然后指定一个带有正确 IP 地址和要创建的数据库名称的连接 URL。如果数据库不存在,MongoDB 将创建该数据库并与之建立连接。

示例

创建名为 mydatabase 的数据库:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")

mydb = myclient["mydatabase"]

重要提示: 在 MongoDB 中,数据库在获得内容之前是不会被创建的!MongoDB 会等到您创建了至少一个文档(记录)的集合(表),然后才实际创建数据库(和集合)。

检查数据库是否存在

请记住:在 MongoDB 中,数据库在获得内容之前是不会被创建的

您可以通过列出系统中的所有数据库来检查数据库是否存在:

示例

返回系统数据库的列表:

print(myclient.list_database_names())

或者您可以通过名称检查特定数据库:

示例

检查 mydatabase 是否存在:

dblist = myclient.list_database_names()
if "mydatabase" in dblist:
  print("The database exists.")

创建集合

要在 MongoDB 中创建集合,请使用数据库对象并指定要创建的集合的名称。如果集合不存在,MongoDB 将创建该集合。

示例

创建名为“customers”的集合:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]

mycol = mydb["customers"]

重要提示: 在 MongoDB 中,集合在获得内容之前是不会被创建的!MongoDB 会等到您插入了一个文档后,才实际创建集合。

检查集合是否存在

请记住:在 MongoDB 中,集合在获得内容之前是不会被创建的。因此,如果这是您第一次创建集合

您可以通过列出所有集合来检查数据库中是否存在集合:

示例

返回数据库中所有集合的列表:

print(mydb.list_collection_names())

或者您可以按名称检查特定集合:

示例

检查“customers”集合是否存在:

collist = mydb.list_collection_names()
if "customers" in collist:
  print("The collection exists.")

插入集合

要将记录(在 MongoDB 中称为文档)插入集合,我们使用 insert_one() 方法。insert_one() 方法的第一个参数是一个包含文档中每个字段的名称和值的字典。

示例

在“customers”集合中插入一条记录:

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mydict = {
    "name": "John", "address": "Highway 37" }

x = mycol.insert_one(mydict)

返回 _id 字段

insert_one() 方法返回一个 InsertOneResult 对象,该对象有一个属性 inserted_id,该属性保存插入文档的 id。

示例

在“customers”集合中插入另一条记录,并返回 _id 字段的值:

mydict = {
    "name": "Peter", "address": "Lowstreet 27" }

x = mycol.insert_one(mydict)

print(x.inserted_id)

如果您未指定 _id 字段,MongoDB 将为您添加一个并为每个文档分配唯一的 id。在上面的示例中,未指定 _id 字段,因此 MongoDB 为记录(文档)分配了唯一的 _id。

插入多个文档

要在 MongoDB 的集合中插入多个文档,我们使用 insert_many() 方法。insert_many() 方法的第一个参数是包含要插入数据的字典的列表。

示例

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mylist = [
  {
    "name": "Amy", "address": "Apple st 652"},
  {
    "name": "Hannah", "address": "Mountain 21"},
  {
    "name": "Michael", "address": "Valley 345"},
  {
    "name": "Sandy", "address": "Ocean blvd 2"},
  {
    "name": "Betty", "address": "Green Grass 1"},
  {
    "name": "Richard", "address": "Sky st 331"},
  {
    "name": "Susan", "address": "One way 98"},
  {
    "name": "Vicky", "address": "Yellow Garden 2"},
  {
    "name": "Ben", "address": "Park Lane 38"},
  {
    "name": "William", "address": "Central st 954"},
  {
    "name": "Chuck", "address": "Main Road 989"},
  {
    "name": "Viola", "address": "Sideway 1633"}
]

x = mycol.insert_many(mylist)

#

 打印插入文档的 _id 值的列表:
print(x.inserted_ids)

insert_many() 方法返回一个 InsertManyResult 对象,该对象有一个属性 inserted_ids,该属性保存插入文档的 id。

插入多个文档,指定ID

如果您不希望 MongoDB 为您的文档分配唯一的 id,可以在插入文档时指定 _id 字段。请记住,值必须是唯一的。两个文档不能具有相同的 _id。

示例

import pymongo

myclient = pymongo.MongoClient("mongodb://localhost:27017/")
mydb = myclient["mydatabase"]
mycol = mydb["customers"]

mylist = [
  {
    "_id": 1, "name": "John", "address": "Highway 37"},
  {
    "_id": 2, "name": "Peter", "address": "Lowstreet 27"},
  {
    "_id": 3, "name": "Amy", "address": "Apple st 652"},
  {
    "_id": 4, "name": "Hannah", "address": "Mountain 21"},
  {
    "_id": 5, "name": "Michael", "address": "Valley 345"},
  {
    "_id": 6, "name": "Sandy", "address": "Ocean blvd 2"},
  {
    "_id": 7, "name": "Betty", "address": "Green Grass 1"},
  {
    "_id": 8, "name": "Richard", "address": "Sky st 331"},
  {
    "_id": 9, "name": "Susan", "address": "One way 98"},
  {
    "_id": 10, "name": "Vicky", "address": "Yellow Garden 2"},
  {
    "_id": 11, "name": "Ben", "address": "Park Lane 38"},
  {
    "_id": 12, "name": "William", "address": "Central st 954"},
  {
    "_id": 13, "name": "Chuck", "address": "Main Road 989"},
  {
    "_id": 14, "name": "Viola", "address": "Sideway 1633"}
]

x = mycol.insert_many(mylist)

# 打印插入文档的 _id 值的列表:
print(x.inserted_ids)

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎 点赞、收藏、关注

相关文章
|
2月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
141 1
|
3月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
753 19
|
3月前
|
数据采集 存储 JSON
使用Python获取1688商品详情的教程
本教程介绍如何使用Python爬取1688商品详情信息,涵盖环境配置、代码编写、数据处理及合法合规注意事项,助你快速掌握商品数据抓取与保存技巧。
|
5月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异
|
5月前
|
XML Linux 区块链
Python提取Word表格数据教程(含.doc/.docx)
本文介绍了使用LibreOffice和python-docx库处理DOC文档表格的方法。首先需安装LibreOffice进行DOC到DOCX的格式转换,然后通过python-docx读取和修改表格数据。文中提供了详细的代码示例,包括格式转换函数、表格读取函数以及修改保存功能。该方法适用于Windows和Linux系统,解决了老旧DOC格式文档的处理难题,为需要处理历史文档的用户提供了实用解决方案。
575 1
|
4月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
315 0
|
4月前
|
数据采集 索引 Python
Python Slice函数使用教程 - 详解与示例 | Python切片操作指南
Python中的`slice()`函数用于创建切片对象,以便对序列(如列表、字符串、元组)进行高效切片操作。它支持指定起始索引、结束索引和步长,提升代码可读性和灵活性。
|
7月前
|
人工智能 安全 Shell
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
Jupyter MCP服务器基于模型上下文协议(MCP),实现大型语言模型与Jupyter环境的无缝集成。它通过标准化接口,让AI模型安全访问和操作Jupyter核心组件,如内核、文件系统和终端。本文深入解析其技术架构、功能特性及部署方法。MCP服务器解决了传统AI模型缺乏实时上下文感知的问题,支持代码执行、变量状态获取、文件管理等功能,提升编程效率。同时,严格的权限控制确保了安全性。作为智能化交互工具,Jupyter MCP为动态计算环境与AI模型之间搭建了高效桥梁。
549 2
Jupyter MCP服务器部署实战:AI模型与Python环境无缝集成教程
|
6月前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
806 1