题目
给你一个整数 n ,表示比赛中的队伍数。比赛遵循一种独特的赛制:
- 如果当前队伍数是 偶数 ,那么每支队伍都会与另一支队伍配对。总共进行 n / 2 场比赛,且产生 n / 2 支队伍进入下一轮。
- 如果当前队伍数为 奇数 ,那么将会随机轮空并晋级一支队伍,其余的队伍配对。总共进行 (n - 1) / 2 场比赛,且产生 (n - 1) / 2 + 1 支队伍进入下一轮。
返回在比赛中进行的配对次数,直到决出获胜队伍为止。
示例 1:
输入:n = 7 输出:6 解释:比赛详情: - 第 1 轮:队伍数 = 7 ,配对次数 = 3 ,4 支队伍晋级。 - 第 2 轮:队伍数 = 4 ,配对次数 = 2 ,2 支队伍晋级。 - 第 3 轮:队伍数 = 2 ,配对次数 = 1 ,决出 1 支获胜队伍。 总配对次数 = 3 + 2 + 1 = 6
示例 2:
输入:n = 14 输出:13 解释:比赛详情: - 第 1 轮:队伍数 = 14 ,配对次数 = 7 ,7 支队伍晋级。 - 第 2 轮:队伍数 = 7 ,配对次数 = 3 ,4 支队伍晋级。 - 第 3 轮:队伍数 = 4 ,配对次数 = 2 ,2 支队伍晋级。 - 第 4 轮:队伍数 = 2 ,配对次数 = 1 ,决出 1 支获胜队伍。 总配对次数 = 7 + 3 + 2 + 1 = 13
解题
方法一:模拟
class Solution { public: int numberOfMatches(int n) { if(n==1) return 0; if(n%2==0){ return n/2+numberOfMatches(n/2); } else{ return (n-1)/2+numberOfMatches((n-1)/2+1); } } };
方法二:数学
在每一场比赛中,输的队伍无法晋级,且不会再参加后续的比赛。由于最后只决出一个获胜队伍,因此就有 n-1个无法晋级的队伍,也就是会有 n-1场比赛。
class Solution { public: int numberOfMatches(int n) { return n-1; } };