通信系统中ZF,ML,MRC以及MMSE四种信号检测算法误码率matlab对比仿真

简介: 通信系统中ZF,ML,MRC以及MMSE四种信号检测算法误码率matlab对比仿真

1.算法运行效果图预览

ff5103e38185d921414b28e7898f26b1_82780907_202401120017070527244328_Expires=1704990427&Signature=b%2FX3nTfaC2ePZSzdaGwFS%2FaTIC4%3D&domain=8.jpeg
a97d9525f30f78a27715546c77276286_82780907_202401120017070622770691_Expires=1704990427&Signature=2J%2FLP3ZZWKqihq1CT104FHFqkHo%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
通信系统中ZF(Zero Forcing,零迫)、ML(Maximum Likelihood,最大似然)、MRC(Maximum Ratio Combining,最大比合并)和MMSE(Minimum Mean Square Error,最小均方误差)是四种常见的信号检测算法。这些算法在通信系统中用于从接收信号中恢复出原始发送信号。

3.1、ZF(零迫)算法
ZF算法是一种简单的信号检测算法,它的目标是在接收端完全消除干扰和噪声,从而恢复出原始的发送信号。ZF算法通过迫零接收端的干扰和噪声,使得接收信号只包含所需的信号分量。

假设接收信号为y,发送信号为s,信道矩阵为H,噪声为n,则接收信号可以表示为:

y = Hs + n

ZF算法通过左乘信道矩阵的逆矩阵H^(-1),得到:

s = H^(-1) * y

这样,就可以恢复出原始的发送信号s。

3.2、ML(最大似然)算法
ML算法是一种基于统计学的信号检测算法,它的目标是在所有可能的发送信号中,找到最有可能的那一个。ML算法通过比较接收信号与所有可能的发送信号的似然度,选择似然度最大的那个作为最终的检测结果。

    假设发送信号有M种可能,每种可能的概率为p(s|y),则ML算法的目标是找到使得p(s|y)最大的s。具体的数学表达式为:

s_ML = arg max p(s|y)

3.3、MRC(最大比合并)算法
MRC算法是一种多天线技术中的信号检测算法,它的目标是通过合并多个接收天线的信号,提高接收信号的信噪比。MRC算法通过对每个接收天线的信号进行加权合并,使得合并后的信号信噪比最大化。

   假设有N个接收天线,每个天线的接收信号为y_n,信道为h_n,噪声为n_n,则MRC算法的输出可以表示为:

y_MRC = Σ (h_n^ y_n) / Σ |h_n|^2

其中,*表示共轭运算。

3.4、MMSE(最小均方误差)算法
MMSE算法是一种考虑噪声和干扰的信号检测算法,它的目标是在抑制噪声和干扰的同时,尽可能地减小误差。MMSE算法通过最小化均方误差来衡量检测性能的优劣。

假设接收信号为y,发送信号为s,信道矩阵为H,噪声为n,则MMSE算法的输出可以表示为:

s_MMSE = (H^H H + σ^2 I)^(-1) H^H y

其中,σ^2是噪声的方差,I是单位矩阵。

   以上是ZF、ML、MRC和MMSE四种信号检测算法的原理和数学公式。这些算法在通信系统中有着广泛的应用,可以提高通信系统的性能和稳定性。

4.部分核心程序

```N = 100; %Tc/TS the ratio between symbol period
num_Source_bit = 2e6; %1000000
num_Tag_bit = num_Source_bit/N;%10000
num_Channel = num_Source_bit/f_s;%100

s_Alphabet = 1/sqrt(2)* [1+1j;-1+1j ;-1-1j ;1-1j];%4x1
c_Alphabet = [1;-1]; %2x1

s_Matrix = exp(j(randi([0 3],num_Channel,f_s)pi/2+pi/4)); %ambient signal (QPSK) %100x10000
c_Matrix = 2(randi([0 1],num_Channel,f_s/N))-1; %backscattered signal (BPSK) %100x100
noise_Matrix = 1/sqrt(2)
(normrnd(0,sqrt(varNoise),num_Channel,f_s) + 1i*normrnd(0,sqrt(varNoise),num_Channel,f_s));%100x10000

%% AWGN
for kChannel = 1:num_Channel%100
kChannel
h = 1/sqrt(2)(normrnd(0,1) + 1inormrnd(0,1)); %normalized direct-link channel
f = 1/sqrt(2)(normrnd(0,1) + 1inormrnd(0,1)); %normalized TX-Tag channel
g = sqrt(0.5); %fixed Tag-C-RX channel
s = s_Matrix(kChannel,:);%%S-matrix:100x10000 ; S:1x10000
c = c_Matrix(kChannel,:);%c-matrix:100x100 ; c:1x100
noise = noise_Matrix(kChannel,:);%noise:1x10000
c_sample = reshape(repmat(c,N,1),1,f_s);%fs=1e4 thus,repmat(c,N,1):100x100;c-sample:1x10000

for kSNR = 1:length(SNR_dB)%length=11
    p     = P(kSNR);
    y     = sqrt(p)*h*s + sqrt(p)*f*alpha*g*s.*c_sample; %1x10000 received signal
    y_std = sqrt(p)*h*s;
    y     = awgn(y,SNR_dB(kSNR),'measured');
    y_std = awgn(y_std,SNR_dB(kSNR),'measured');

    %%ML detection 
    %%fixed c=-1
    s_detection_c1     = abs( repmat(y,4,1)- sqrt(p)*(h -  alpha * g * f)* repmat(s_Alphabet,1,f_s));
    [~,s_Est_c1_index] = min(s_detection_c1);
    s_Est_c1           = exp(j*(mod(s_Est_c1_index-1,4)*pi/2+pi/4));
    %%fixed c=1
    s_detection_c2     = abs( repmat(y,4,1)- sqrt(p)*(h +  alpha * g * f)* repmat(s_Alphabet,1,f_s));
    [~,s_Est_c2_index] = min(s_detection_c2);
    s_Est_c2           = exp(j*(mod(s_Est_c2_index-1,4)*pi/2+pi/4));


    c_detection        = abs([y-sqrt(p)*(h-alpha * g * f)*s_Est_c1; y-sqrt(p)*(h+ alpha * g * f)*s_Est_c2]).^2;
    c_est_block1       = sqrt(sum(reshape(c_detection(1,:),N,f_s/N)));
    c_est_block2       = sqrt(sum(reshape(c_detection(2,:),N,f_s/N)));

    [~,c_Est_index]    = min([c_est_block1;c_est_block2]);
    c_Est              = (c_Est_index-1)*2-1;


    c_Est_sample       = reshape(repmat(c_Est,N,1),1,f_s);%1x10000
    s_detection        = abs( repmat(y,4,1)- sqrt(p)*(h*repmat(s_Alphabet,1,f_s) + s_Alphabet*alpha * g * f*c_Est_sample));

    [~,s_Est_index]    = min(s_detection);
    s_Est              = exp(j*(mod(s_Est_index-1,4)*pi/2+pi/4));


    Num_BER_s(kChannel,kSNR)     = length(find(s-s_Est~=0)); 
    Num_BER_c(kChannel,kSNR)     = length(find(c-c_Est~=0)); 
end

end

num_BER_s = sum(Num_BER_s);
num_BER_c = sum(Num_BER_c);

BER_s = num_BER_s/num_Source_bit;
BER_c = num_BER_c/num_Tag_bit;

figure;
semilogy(SNR_dB,BER_s,'b-o')
hold on
semilogy(SNR_dB,BER_c,'r-s')
grid on
xlabel('SNR (dB)')
ylabel('BER')

legend('s(n)','c(n)')

save ML_Awgn.mat SNR_dB BER_s BER_c

```

相关文章
|
2天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
1天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
2天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
17天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
3天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
4天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
3天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
17 3
|
14天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
15天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。