通信系统中ZF,ML,MRC以及MMSE四种信号检测算法误码率matlab对比仿真

简介: 通信系统中ZF,ML,MRC以及MMSE四种信号检测算法误码率matlab对比仿真

1.算法运行效果图预览

ff5103e38185d921414b28e7898f26b1_82780907_202401120017070527244328_Expires=1704990427&Signature=b%2FX3nTfaC2ePZSzdaGwFS%2FaTIC4%3D&domain=8.jpeg
a97d9525f30f78a27715546c77276286_82780907_202401120017070622770691_Expires=1704990427&Signature=2J%2FLP3ZZWKqihq1CT104FHFqkHo%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
通信系统中ZF(Zero Forcing,零迫)、ML(Maximum Likelihood,最大似然)、MRC(Maximum Ratio Combining,最大比合并)和MMSE(Minimum Mean Square Error,最小均方误差)是四种常见的信号检测算法。这些算法在通信系统中用于从接收信号中恢复出原始发送信号。

3.1、ZF(零迫)算法
ZF算法是一种简单的信号检测算法,它的目标是在接收端完全消除干扰和噪声,从而恢复出原始的发送信号。ZF算法通过迫零接收端的干扰和噪声,使得接收信号只包含所需的信号分量。

假设接收信号为y,发送信号为s,信道矩阵为H,噪声为n,则接收信号可以表示为:

y = Hs + n

ZF算法通过左乘信道矩阵的逆矩阵H^(-1),得到:

s = H^(-1) * y

这样,就可以恢复出原始的发送信号s。

3.2、ML(最大似然)算法
ML算法是一种基于统计学的信号检测算法,它的目标是在所有可能的发送信号中,找到最有可能的那一个。ML算法通过比较接收信号与所有可能的发送信号的似然度,选择似然度最大的那个作为最终的检测结果。

    假设发送信号有M种可能,每种可能的概率为p(s|y),则ML算法的目标是找到使得p(s|y)最大的s。具体的数学表达式为:

s_ML = arg max p(s|y)

3.3、MRC(最大比合并)算法
MRC算法是一种多天线技术中的信号检测算法,它的目标是通过合并多个接收天线的信号,提高接收信号的信噪比。MRC算法通过对每个接收天线的信号进行加权合并,使得合并后的信号信噪比最大化。

   假设有N个接收天线,每个天线的接收信号为y_n,信道为h_n,噪声为n_n,则MRC算法的输出可以表示为:

y_MRC = Σ (h_n^ y_n) / Σ |h_n|^2

其中,*表示共轭运算。

3.4、MMSE(最小均方误差)算法
MMSE算法是一种考虑噪声和干扰的信号检测算法,它的目标是在抑制噪声和干扰的同时,尽可能地减小误差。MMSE算法通过最小化均方误差来衡量检测性能的优劣。

假设接收信号为y,发送信号为s,信道矩阵为H,噪声为n,则MMSE算法的输出可以表示为:

s_MMSE = (H^H H + σ^2 I)^(-1) H^H y

其中,σ^2是噪声的方差,I是单位矩阵。

   以上是ZF、ML、MRC和MMSE四种信号检测算法的原理和数学公式。这些算法在通信系统中有着广泛的应用,可以提高通信系统的性能和稳定性。

4.部分核心程序

```N = 100; %Tc/TS the ratio between symbol period
num_Source_bit = 2e6; %1000000
num_Tag_bit = num_Source_bit/N;%10000
num_Channel = num_Source_bit/f_s;%100

s_Alphabet = 1/sqrt(2)* [1+1j;-1+1j ;-1-1j ;1-1j];%4x1
c_Alphabet = [1;-1]; %2x1

s_Matrix = exp(j(randi([0 3],num_Channel,f_s)pi/2+pi/4)); %ambient signal (QPSK) %100x10000
c_Matrix = 2(randi([0 1],num_Channel,f_s/N))-1; %backscattered signal (BPSK) %100x100
noise_Matrix = 1/sqrt(2)
(normrnd(0,sqrt(varNoise),num_Channel,f_s) + 1i*normrnd(0,sqrt(varNoise),num_Channel,f_s));%100x10000

%% AWGN
for kChannel = 1:num_Channel%100
kChannel
h = 1/sqrt(2)(normrnd(0,1) + 1inormrnd(0,1)); %normalized direct-link channel
f = 1/sqrt(2)(normrnd(0,1) + 1inormrnd(0,1)); %normalized TX-Tag channel
g = sqrt(0.5); %fixed Tag-C-RX channel
s = s_Matrix(kChannel,:);%%S-matrix:100x10000 ; S:1x10000
c = c_Matrix(kChannel,:);%c-matrix:100x100 ; c:1x100
noise = noise_Matrix(kChannel,:);%noise:1x10000
c_sample = reshape(repmat(c,N,1),1,f_s);%fs=1e4 thus,repmat(c,N,1):100x100;c-sample:1x10000

for kSNR = 1:length(SNR_dB)%length=11
    p     = P(kSNR);
    y     = sqrt(p)*h*s + sqrt(p)*f*alpha*g*s.*c_sample; %1x10000 received signal
    y_std = sqrt(p)*h*s;
    y     = awgn(y,SNR_dB(kSNR),'measured');
    y_std = awgn(y_std,SNR_dB(kSNR),'measured');

    %%ML detection 
    %%fixed c=-1
    s_detection_c1     = abs( repmat(y,4,1)- sqrt(p)*(h -  alpha * g * f)* repmat(s_Alphabet,1,f_s));
    [~,s_Est_c1_index] = min(s_detection_c1);
    s_Est_c1           = exp(j*(mod(s_Est_c1_index-1,4)*pi/2+pi/4));
    %%fixed c=1
    s_detection_c2     = abs( repmat(y,4,1)- sqrt(p)*(h +  alpha * g * f)* repmat(s_Alphabet,1,f_s));
    [~,s_Est_c2_index] = min(s_detection_c2);
    s_Est_c2           = exp(j*(mod(s_Est_c2_index-1,4)*pi/2+pi/4));


    c_detection        = abs([y-sqrt(p)*(h-alpha * g * f)*s_Est_c1; y-sqrt(p)*(h+ alpha * g * f)*s_Est_c2]).^2;
    c_est_block1       = sqrt(sum(reshape(c_detection(1,:),N,f_s/N)));
    c_est_block2       = sqrt(sum(reshape(c_detection(2,:),N,f_s/N)));

    [~,c_Est_index]    = min([c_est_block1;c_est_block2]);
    c_Est              = (c_Est_index-1)*2-1;


    c_Est_sample       = reshape(repmat(c_Est,N,1),1,f_s);%1x10000
    s_detection        = abs( repmat(y,4,1)- sqrt(p)*(h*repmat(s_Alphabet,1,f_s) + s_Alphabet*alpha * g * f*c_Est_sample));

    [~,s_Est_index]    = min(s_detection);
    s_Est              = exp(j*(mod(s_Est_index-1,4)*pi/2+pi/4));


    Num_BER_s(kChannel,kSNR)     = length(find(s-s_Est~=0)); 
    Num_BER_c(kChannel,kSNR)     = length(find(c-c_Est~=0)); 
end

end

num_BER_s = sum(Num_BER_s);
num_BER_c = sum(Num_BER_c);

BER_s = num_BER_s/num_Source_bit;
BER_c = num_BER_c/num_Tag_bit;

figure;
semilogy(SNR_dB,BER_s,'b-o')
hold on
semilogy(SNR_dB,BER_c,'r-s')
grid on
xlabel('SNR (dB)')
ylabel('BER')

legend('s(n)','c(n)')

save ML_Awgn.mat SNR_dB BER_s BER_c

```

相关文章
|
28天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
28天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
137 68
|
30天前
|
算法 JavaScript
基于遗传优化的Sugeno型模糊控制器设计matlab仿真
本课题基于遗传优化的Sugeno型模糊控制器设计,利用MATLAB2022a进行仿真。通过遗传算法优化模糊控制器的隶属函数参数,提升控制效果。系统原理结合了模糊逻辑与进化计算,旨在增强系统的稳定性、响应速度和鲁棒性。核心程序实现了遗传算法的选择、交叉、变异等步骤,优化Sugeno型模糊系统的参数,适用于工业控制领域。
|
30天前
|
算法 决策智能
基于遗传优化的货柜货物摆放优化问题求解matlab仿真
本项目采用MATLAB2022A实现基于遗传算法的货柜货物摆放优化,初始随机放置货物后通过适应度选择、交叉、变异及逆转操作迭代求解,最终输出优化后的货物分布图与目标函数变化曲线,展示进化过程中的最优解和平均解的变化趋势。该方法模仿生物进化,适用于复杂空间利用问题,有效提高货柜装载效率。
|
28天前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
51 18
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
2月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
200 80
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。