Mysql 事务原理

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: Mysql 事务原理

1、事务

事务 (transaction) :并发控制的前提下,用户定义的一个操作序列。这些操作要么都做(提交),要么都不做(回滚),不可分割。

目的:将数据库从一种一致性状态转换为另一种一致性状态,保证系统始终处于一个完整且正确的状态。

1.1、ACID 特性

  • 原子性 (Atomicity)
  • 一致性 (Consistency)
  • 隔离性 (Isolation)
  • 持久性 (Durability)

1.1.1、原子性

一个事务中的操作,要么都做,要么都不做,不存在中间状态,是一个不可分割的工作单位。若事务执行过程发生错误,回滚到事务初始状态。

实现机制: undo log

* undo log

undo log 回滚日志,存放在共享表空间内,用于存储旧版本的数据。

undo log是逻辑日志,回滚时将数据库逻辑地恢复到原来的样子,也就是说,根据 undo log 记录的事务 DML 操作,做之前的相反操作,实现回滚操作,保证了事务的原子性和一致性。

此外,undo log 也可以用来实现 MVCC。用户读取记录时,若该记录被其他事务占用,当前事务可以通过 undo log 读取之前事务 DML 操作提交后的行版本信息,以此实现非锁定读。

总结 undo log 的作用

  • 事务回滚:记录事务 DML 操作步骤,通过逆运算(逻辑取反)实现事务回滚。
  • MVCC:记录事务 DML 操作提交后产生的行版本信息。

1.1.2、一致性

事务的前后,数据满足完整性约束,数据库保持一致性状态。

一致性指的是事务将数据库从一种一致性状态转变为下一种一致性的状态,在事务执行前后,数据库完整性约束没有被破坏。一个事务需要提交后才会被其他事务可见。

一致性的种类

  • 数据一致性(完整性约束),必须遵守,例如主键特性、外键特性等
  • 预期一致性(逻辑一致性),适当破坏,提高并发速度。例:查询是否存在,不存在写入,可能出现数据查询不存在,插入时却存在,报错。

实现机制:原子性 + 隔离性 + 一致性实现。

1.1.3、* 隔离性

并发事务间相互隔离,互不影响,避免多个事务并发异步执行进而导致数据的不一致。

实现机制:为了提升性能,设定不同程度的隔离级别,适度破坏逻辑一致性。

  • :用来并发处理 DML 操作。数据库中提供粒度锁的策略,针对表(聚集索引 B+ 树)、页(聚集索引 B+ 树叶子节点)、行(叶子节点中某一段行记录)三种粒度加锁
  • MVCC :多版本并发控制。主要解决一致性非锁定读,通过记录和获取行版本信息,而不是使用锁来限制读操作,从而实现高效并发读性能。

1.1.4、持久性

事务一旦提交,其结果就是永久性的,即使系统故障也不丢失。

实现机制: redo log

redo log

redo log 重做日志,用于实现事务的持久性。

事务提交后,事务 DML 操作持久化,记录事务 DML 操作对应物理页修改的内容,写入 redo log 磁盘文件。发生宕机等故障时,恢复数据库数据。

redo log 属于 WAL (Write Ahead Log)预写日志,用于数据恢复,顺序写磁盘,再通过其他线程异步刷到 B+ 树。与 redis 的aof类似。

1.2、事务控制语句

innoDB 中一条 sql 语句是一个事务。若想多条语句构成事务,采用事务控制语句。

-- 显示开启事务
 START | BEGIN TRANSACTION
 -- 提交事务,并使得已对数据库做的所有修改持久化
 COMMIT
 -- 回滚事务,结束用户的事务,并撤销正在进行的所有未提交的修改
 ROLLBACK
 -- 创建一个保存点,一个事务可以有多个保存点
 SAVEPOINT identifier
 -- 删除一个保存点
 RELEASE SAVEPOINT identifier
 -- 事务回滚到保存点
 ROLLBACK TO [SAVEPOINT] identifier

2、隔离级别

ISO 和 ANIS SQL 标准制定了四种事务隔离级别,目的在于提升数据库并发性能。

不同隔离级别的区别在于读操作的加锁,写操作均加排他锁。隔离级别的高低,与事务请求锁的数量和保持锁时间的长短相关。级别越高,性能越低;级别越低,逻辑一致性受到的影响越大。

2.1、隔离级别的分类

2.1.1、读未提交 RU

读未提交,READ UNCOMMITTED。事务还未提交,其他事务就看到修改。

  • 读:不做处理
  • 写:自动加 X 锁

逻辑错误:脏读。

2.1.2、读已提交 RC

读已提交 (RC) ,READ COMMITTED。事务提交后,其他事务可以看到修改。大部分数据库采用的隔离级别,如 oracle, SQL Server 等。

  • 读:MVCC,读取最新版本的行数据
  • 写:自动加 X 锁

MVCC 在事务期间每次读取数据时,生成新的 read view,这也意味着同一事务多次读取同一条数据可能出现数据不一致(不可重复读)。因为在多次读取数据期间可能有其他事务修改并提交了该条记录。

逻辑错误:不可重复读。

2.1.3、可重复读 RR

可重复读 (RR) ,REPEATABLE READ。Mysql 采用的默认隔离级别

  • 读:MVCC,读取事务开始前版本的行数据
  • 写:自动加 X 锁

MVCC 在事务启动时,生成新的 read view,整个事务期间读取数据使用这个 read view,这样保证了在事务期间读到的数据都是事务启动前的记录。

逻辑错误:幻读。

2.1.4、可串行化 SC

可串行化,SERIALIZABLE

  • 读:自动加 S 锁 (next-key locking)
  • 写:自动加 X 锁

2.2、并发读异常

不同隔离级别由于逻辑一致性问题造成的并发异常。

2.2.1、脏读

一个事务读到了另一个事务未提交的修改(读到脏数据)。

脏读在 RU 隔离级别存在。在读写分离的场景下,可以将 slave 节点设置为 READ UNCOMMITTED。此时脏读不影响,在 slave 上查询并不需要特别精准的返回值。

例如:session B 读到了 session A 中事务未提交的脏数据。

seq session A session B
1 SET @@tx_isolation = 'READ UNCOMMITTED'; SET @@tx_isolation = 'READ UNCOMMITTED';
2 BEGIN; BEGIN;
4 UPDATE account_t SET money = money - 100 WHERE name = 'A';
5 SELECT money FROM account_t WHERE name = 'A';
6 COMMIT; COMMIT;

2.2.2、不可重复读

一个事务读到了另一个事务的提交的修改,同一事务内两次读取同一个数据不一样。

不可重复读在 RC 隔离级别存在。一般来说,不可重复读的问题可以接受,因为读到已经提交的数据,不会带来很大的问题。

例如:session B 读到了 session A 中事务提交的修改,造成两次读取同一个数据不一样。

seq session A session B
1 SET @@tx_isolation = 'READ COMMITTED'; SET @@tx_isolation = 'READ COMMITTED';
2 BEGIN; BEGIN;
4 SELECT money FROM account_t WHERE name = 'A';
5 UPDATE account_t SET money = money - 100 WHERE name = 'A';
6 COMMIT ; SELECT money FROM account_t WHERE name = 'A';
7 COMMIT;

2.2.3、幻读

同一事务两次读取同一个范围内的记录得到的结果集不一样。

幻读在 RR 隔离级别存在,仅在当前读下出现。

例如:由于 session A 的事务提交了插入操作,导致 session B 两次查询范围的结果不一样。

seq session A session B
1 SET @@tx_isolation = 'REPEATABLE READ'; SET @@tx_isolation = 'REPEATABLE READ';
2 BEGIN; BEGIN;
4 SELECT * FROM account_t WHERE id >= 2;
5 INSERT INTO account_t VALUES (4, 'D', 1000);
6 COMMIT ;
7 SELECT * FROM account_t WHERE id >= 2;
COMMIT;

解决:通过读加锁(next-key locking)

seq session A session B
1 SET @@tx_isolation = 'REPEATABLE READ'; SET @@tx_isolation = 'REPEATABLE READ';
2 BEGIN; BEGIN;
4 SELECT * FROM account_t WHERE id >= 2 FOR UPDATE | IN SHARE MODE;
INSERT INTO account_t VALUES (4, 'D', 1000);
6 COMMIT ;
7 SELECT * FROM account_t WHERE id >= 2;
COMMIT;

2.2.4、总结

  • 脏读:一个事务读到了另一个事务未提交的修改
  • 不可重复读:一个事务读到了另一个事务提交后的修改,UPDATE
  • 幻读:同一事务两次读取同一个范围内的记录得到的结果集不一样,INSERT DELETE

2.2.5、测试代码

DROP TABLE IF EXISTS `account_t`;
 CREATE TABLE `account_t` (
     `id` INT(11) NOT NULL,
     `name` VARCHAR(225) DEFAULT NULL,
     `money` INT(11) DEFAULT 0,
     PRIMARY KEY(`id`),
     KEY `idx_name` (`name`)
 ) ENGINE = innoDB AUTO_INCREMENT=0 DEFAULT CHARSET = utf8;
 SELECT * FROM `account_t`;
 INSERT INTO `account_t` VALUES (1, 'A', 1000), (2, 'B', 1000), (3, 'B', 1000);
 ROLLBACK;
 -- 脏读:一个事务读取了另一个未提交事务的修改
 -- 隔离级别:READ UNCOMMITTED
 SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
 BEGIN
 -- 脏读事务1
 UPDATE `account_t` SET `money` = `money` - 100 WHERE `name` = 'A';
 -- 脏读事务2
 SELECT `money` FROM `account_t` WHERE `name` = 'A';
 COMMIT;
 -- 不可重复读:一个事务内两次读取同一个数据不一样
 -- 隔离级别:READ COMMITTED,解决了脏读问题
 SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
 BEGIN
 -- 不可重复读事务1
 UPDATE `account_t` SET `money` = `money` - 100 WHERE `name` = 'A';
 -- 不可重复读事务2
 SELECT `money` FROM `account_t` WHERE `name` = 'A';
 COMMIT;
 -- 幻读:一个事务内两次读取同一个范围内的记录得到的结果集不一样。
 -- 隔离级别:REPEATABLE READ,解决了不可重复读
 SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
 BEGIN
 -- 幻读事务1
 INSERT INTO `account_t` VALUES (4, 'D', 1000);
 -- 幻读事务2
 SELECT * FROM `account_t` WHERE `id` >= 2;
 -- 幻读事务2:解决幻读问题
 SELECT * FROM `account_t` WHERE `id` >= 2 FOR UPDATE;
 COMMIT;

3、MVCC

多版本并发控制 MVCC(Multiversion Concurrency Control),用来实现一致性的非锁定读。非锁定读是指不需要等待访问记录 X 锁的释放。因此 MVCC 没有读写阻塞,只有写写阻塞,提高了并发性。

MVCC 只在读已提交和可重复读的隔离级别下工作,与其他隔离级别不兼容。

MVCC 通过 read view,聚集索引隐藏列,undo log 来实现,关键是解决事务的可见性问题。

3.1、当前读 & 快照读

innoDB 支持的读方式

  • 当前读(锁定读):读取最新版本的记录,对读取的记录加锁(悲观锁),保证其他并发事务不能修改当前记录
  • select ... lock in share mode | for update
  • insert, delete, update,不管什么隔离级别,DML 操作均加锁。
  • undo log
  • 快照读(非锁定读):读取记录的一个快照,对读取的记录不加锁。普通 SELECT 语句

MVCC 的读指的是快照读(非锁定读),因为没有事务需要对历史数据进行 DML 操作。

在读已提交和可重复读的隔离级别下,对于快照数据的定义不同

  • RC 级别:读取当前事务锁定行的最新行记录。
  • RR 级别:读取启动事务时的行记录版本。

3.2、read view

read view 是事务进行快照读的时候产生的读视图,保存了当前事务开启时所有活跃事务的列表。

3.2.1、read view 生成

在读已提交和可重复读的隔离级别下,read view 的区别仅在于创建 read view 的时机不同:

  • RC 级别:每次读取数据时,生成新的 read view。
  • RR 级别:启动事务时,生成新的 read view,一直使用到事务提交。

3.2.2、read view 属性

  • m_ids:创建 read view 时,活跃事务的事务 id 列表。活跃事务指的是已启动但是未提交的事务。
  • min_trx_id:创建 read view 时,活跃事务的最小事务 id
  • max_trx_id:创建 read view 时,预分配给下一个未开启事务的 id,即全局事务的最大事务 id + 1
  • creator_trx_id:创建该 read view 的事务的事务 id

创建 read view 时,read view 属性与事务状态(已提交 - 启动未提交 - 未启动)的关系

事务状态


3.3、聚集索引隐藏列

聚集索引记录的隐藏列

  • trx_id:事务修改记录时,trx_id 记录生成该版本的事务 id。
  • roll_pointer:事务修改记录时,将旧记录写入 undo log,roll_pointer 指向旧版本记录,通过它可以找到修改前的记录。

聚集索引隐藏列

3.4、undo log

用户读取记录时,若该记录被其他事务占用,当前事务可以通过 undo 读取之前事务 DML 操作提交后的行版本信息,以此实现非锁定读。

innoDB 通过 undo log 保存每个记录的多个版本,每个事务读到的记录版本可能是不一样的。在同一个事务中,用户只能看到该事务创建快照之前已经提交的修改和该事务本身做的修改。

3.4、事务的可见性

事务的可见性问题:当前事务访问某条记录时该记录是否可见

判断规则是:判断生成该版本的事务 id (trx_id)与生成 read view 的当前事务 id 的关系。具体来说,生成 read view 的当前事务处于启动未提交状态,重点判断生成该版本事务的所处状态。

  • trx_id = creator_trx_id:当前事务访问自己修改的记录,该版本记录对当前事务可见。
  • trx_id < min_trx_id:生成该版本的事务在当前事务生成 read view 前已提交,该版本记录对当前事务可见。
  • trx_id > max_trx_id:生成该版本的事务在当前事务生成 read view 后启动,该版本记录对当前事务不可见。
  • min_trx <= trx_id <= max_trx_id,判断生成该版本的事务 id 是否在启动未提交的事务 id 列表中
  • 存在:生成该版本记录的事务已启动但未提交,该版本记录对当前事务不可见
  • 不在:生成该版本记录的事务已提交,该版本记录对当前事务可见

整理一下,方便记忆:

  • trx_id = creator_trx_id,版本事务 = 当前事务
  • trx_id < min_trx_id:版本事务已提交,可见。
  • trx_id > max_trx_id: 版本事务后启动,不可见。
  • min_trx <= trx_id <= max_trx_id,版本事务 id 是否在启动未提交的事务 id 列表中
  • 存在:版本事务启动未提交,不可见
  • 不在:版本事务已提交,可见
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
25天前
|
存储 SQL 关系型数据库
MySQL的事务隔离级别
【10月更文挑战第17天】MySQL的事务隔离级别
95 43
|
22天前
|
存储 关系型数据库 MySQL
MySQL主从复制原理和使用
本文介绍了MySQL主从复制的基本概念、原理及其实现方法,详细讲解了一主两从的架构设计,以及三种常见的复制模式(全同步、异步、半同步)的特点与适用场景。此外,文章还提供了Spring Boot环境下配置主从复制的具体代码示例,包括数据源配置、上下文切换、路由实现及切面编程等内容,帮助读者理解如何在实际项目中实现数据库的读写分离。
MySQL主从复制原理和使用
|
1月前
|
缓存 算法 关系型数据库
Mysql(3)—数据库相关概念及工作原理
数据库是一个以某种有组织的方式存储的数据集合。它通常包括一个或多个不同的主题领域或用途的数据表。
50 5
Mysql(3)—数据库相关概念及工作原理
|
1月前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1625 14
|
22天前
|
SQL 关系型数据库 MySQL
Mysql中搭建主从复制原理和配置
主从复制在数据库管理中广泛应用,主要优点包括提高性能、实现高可用性、数据备份及灾难恢复。通过读写分离、从服务器接管、实时备份和地理分布等机制,有效增强系统的稳定性和数据安全性。主从复制涉及I/O线程和SQL线程,前者负责日志传输,后者负责日志应用,确保数据同步。配置过程中需开启二进制日志、设置唯一服务器ID,并创建复制用户,通过CHANGE MASTER TO命令配置从服务器连接主服务器,实现数据同步。实验部分展示了如何在两台CentOS 7服务器上配置MySQL 5.7主从复制,包括关闭防火墙、配置静态IP、设置域名解析、配置主从服务器、启动复制及验证同步效果。
Mysql中搭建主从复制原理和配置
|
30天前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
2月前
|
存储 Oracle 关系型数据库
Oracle和MySQL有哪些区别?从基本特性、技术选型、字段类型、事务、语句等角度详细对比Oracle和MySQL
从基本特性、技术选型、字段类型、事务提交方式、SQL语句、分页方法等方面对比Oracle和MySQL的区别。
493 18
Oracle和MySQL有哪些区别?从基本特性、技术选型、字段类型、事务、语句等角度详细对比Oracle和MySQL
|
1月前
|
存储 SQL 关系型数据库
mysql中主键索引和联合索引的原理与区别
本文详细介绍了MySQL中的主键索引和联合索引原理及其区别。主键索引按主键值排序,叶节点仅存储数据区,而索引页则存储索引和指向数据域的指针。联合索引由多个字段组成,遵循最左前缀原则,可提高查询效率。文章还探讨了索引扫描原理、索引失效情况及设计原则,并对比了InnoDB与MyISAM存储引擎中聚簇索引和非聚簇索引的特点。对于优化MySQL性能具有参考价值。
|
2月前
|
SQL 关系型数据库 MySQL
MySQL基础:事务
本文详细介绍了数据库事务的概念及操作,包括事务的定义、开启、提交与回滚。事务作为一组不可分割的操作集合,确保了数据的一致性和完整性。文章还探讨了事务的四大特性(原子性、一致性、隔离性、持久性),并分析了并发事务可能引发的问题及其解决方案,如脏读、不可重复读和幻读。最后,详细讲解了不同事务隔离级别的特点和应用场景。
141 4
MySQL基础:事务
|
1月前
|
SQL 关系型数据库 MySQL
【MySQL】索引和事务
【MySQL】索引和事务
53 0