在Flink中,通过YARN模式进行峰谷动态并行度扩容缩容可以使用 Flink 自带的动态调优功能

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 在Flink中,通过YARN模式进行峰谷动态并行度扩容缩容可以使用 Flink 自带的动态调优功能【1月更文挑战第6天】【1月更文挑战第26篇】

在Flink中,通过YARN模式进行峰谷动态并行度扩容缩容可以使用 Flink 自带的动态调优功能。以下是一般的步骤:

配置 Flink YARN 集群: 确保 Flink 集群已正确配置以在 YARN 上运行。你可以通过 Flink 的 flink-conf.yaml 文件进行配置,确保正确设置了 YARN 相关的参数,例如 yarn.application.name、yarn.application.queue 等。

配置动态调优参数: 在 Flink 1.11 版本及以上,引入了动态调优功能。你可以通过以下配置来启用和配置动态调优:

yaml
Copy code
jobmanager.dynamic-adjustment: true
jobmanager.dynamic-adjustment.target: <目标并行度>
jobmanager.dynamic-adjustment.scaling-up-operators: <逗号分隔的运算符 ID 列表>
jobmanager.dynamic-adjustment.scaling-down-operators: <逗号分隔的运算符 ID 列表>
jobmanager.dynamic-adjustment 启用或禁用动态调优。
jobmanager.dynamic-adjustment.target 设置目标并行度。
jobmanager.dynamic-adjustment.scaling-up-operators 和 jobmanager.dynamic-adjustment.scaling-down-operators 分别是需要扩容和缩容的运算符列表。
启动 Flink 作业: 提交作业到 YARN 集群并监控其性能。

监控和调整: Flink 提供了 Web UI 和 REST API,用于监控作业的性能。你可以通过这些界面来查看运算符的状态、吞吐量等信息。基于监控信息,系统会自动进行动态调整,也可以手动调整作业的并行度。

请注意,确保 Flink 版本是支持动态调优功能的,并仔细阅读相关版本的文档,因为这些功能可能在不同的版本中有所不同。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
6月前
|
存储 Kubernetes 调度
|
9月前
|
流计算 开发者
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
【开发者评测】实时计算Flink场景实践和核心功能体验测评获奖名单公布!
188 1
|
10月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
492 9
|
11月前
|
消息中间件 监控 数据可视化
实时计算Flink场景实践和核心功能体验
本文详细评测了阿里云实时计算Flink版,从产品引导、文档帮助、功能满足度等方面进行了全面分析。产品界面设计友好,文档丰富实用,数据开发和运维体验优秀,具备出色的实时性和动态扩展性。同时,提出了针对业务场景的改进建议,包括功能定制化增强、高级分析功能拓展及可视化功能提升。文章还探讨了产品与阿里云内部产品及第三方工具的联动潜力,展示了其在多云架构和跨平台应用中的广阔前景。
274 9
|
11月前
|
运维 数据可视化 数据处理
实时计算Flink场景实践和核心功能体验 评测
实时计算Flink场景实践和核心功能体验 评测
297 5
|
11月前
|
运维 监控 安全
实时计算Flink场景实践和核心功能体验
实时计算Flink场景实践和核心功能体验
|
11月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
312 0
|
SQL 流计算
Flink SQL 在快手实践问题之Window TVF改进窗口聚合功能如何解决
Flink SQL 在快手实践问题之Window TVF改进窗口聚合功能如何解决
146 1
|
资源调度 分布式计算 Hadoop
YARN(Hadoop操作系统)的架构
本文详细解释了YARN(Hadoop操作系统)的架构,包括其主要组件如ResourceManager、NodeManager和ApplicationMaster的作用以及它们如何协同工作来管理Hadoop集群中的资源和调度作业。
453 3
YARN(Hadoop操作系统)的架构
|
资源调度 分布式计算 Hadoop
使用YARN命令管理Hadoop作业
本文介绍了如何使用YARN命令来管理Hadoop作业,包括查看作业列表、检查作业状态、杀死作业、获取作业日志以及检查节点和队列状态等操作。
353 1
使用YARN命令管理Hadoop作业