C++继承、多继承及菱形继承

简介: C++继承、多继承及菱形继承

继承

继承是C++面向对象的三大特性之一(封装、继承和多态)。

一、构造和析构顺序

先执行父类构造函数,再执行子类构造函数;

先执行子类析构函数,在执行父类析构函数。

二、同名隐藏
2.1 概念

子类中的同名属性和成员函数,会隐藏掉父类中的同名属性和成员函数,如果父类中的同名成员函数有重载,也会被隐藏。注意,同名隐藏是针对子类来说的,子类想要访问父类中的同名属性或者成员函数需要加父类的作用域。

2.2 代码示例
#include <iostream>
using namespace std;
class Base{
public:
    Base() { std::cout << "Base Construct call."  << std::endl; }
    ~Base() { std::cout << "Base Distroy call."  << std::endl; }
    // 普通成员函数及其重载
    void func(){ std::cout << "Base func() call."  << std::endl; }
    void func(int a) { std::cout << "Base func(int a) call."  << std::endl; }
  // 静态成员函数
    static void func_s() { std::cout << "Base ---> static func_s() call."  << std::endl; }
public:
    int m_A = 100; // 普通成员属性
    static int m_B; // 静态成员属性,需要在类外初始化
};
int Base::m_B = 10000; // 类外初始化
class Son : public Base{
public:
    Son() { std::cout << "Son Construct call."  << std::endl; }
    ~Son() { std::cout << "Son Distroy call."  << std::endl; }
    void func() { std::cout << "Son func() call."  << std::endl; }
    static void func_s() { std::cout << "Son ---> static func_s() call."  << std::endl; }
public:
    int m_A = 200;
    static int m_B;
};
int Son::m_B = 20000;
int main(int argc, char* argv[])
{
    std::cout << "================== 构造函数调用 ==================="  << std::endl;
    Son s1;
    std::cout << "================== 同名隐藏 ==================="  << std::endl;
    std::cout << "s1.m_A: " << s1.m_A << std::endl; // 隐藏了父类同名的m_A属性
    std::cout << "s1::Base::m_A: " << s1.Base::m_A << std::endl;
    s1.func();  // 隐藏了父类Base的所有同名及重载的func函数
    s1.Base::func(); // 可以加父类的作用域进行访问
    // s1.func(2);
    s1.Base::func(2); // 可以加父类的作用域进行访问
    // 类的静态属性和静态成员函数有两种访问方式
    std::cout << "============== 通过实例化对象访问静态属性及成员函数 ================"  << std::endl;
    // 1. 使用
    std::cout << "s1.m_B: " << s1.m_B << std::endl;
    std::cout << "s1::Base::m_B: " << s1.Base::m_B << std::endl;
  s1.func_s();
    s1.Base::func_s();
    std::cout << "================== 通过类访问静态属性及成员函数 ==================="  << std::endl;
    std::cout << "Son::m_B " << Son::m_B << std::endl;
    // std::cout << "Base::m_B " << Base::m_B << std::endl; // Base类本身就能访问本类的静态属性
    std::cout << "Son::Base::m_B " << Son::Base::m_B << std::endl; // 通过子类加父类作用域访问父类的静态属性
    Son::func_s();
    Son::Base::func_s();
    std::cout << "================== 析构函数调用 ==================="  << std::endl;
  return 0;
}

运行结果:

三、多继承

C++允许一个类继承多个类。在多个父类有同名的属性时,容易出现二义性。

语法:

class 子类名: 继承方式 父类1, 继承方式 父类2{};

代码示例:

#include <iostream>
using namespace std;
class Base1{
public:
    int m_A = 100;
};
class Base2{
public:
    int m_A = 1000;
    int m_B = 200;
};
class Son: public Base1, public Base2{
public:
    int m_C = 300;    
};
int main(int argc, char* argv[])
{
    Son s;
    // std::cout << "s.m_A " << s.m_A << std::endl; // 错误
    // 当多个父类中出现同名的属性时,需要加作用域区分,否则编译器不能确定从哪个父类继承该属性
    std::cout << "s.Base1::m_A " << s.Base1::m_A << std::endl;
    std::cout << "s.Base2::m_A " << s.Base2::m_A << std::endl;
  return 0;
}
四、菱形继承存在的问题及解决方法
4.1 什么是菱形继承?

两个子类继承同一个基类,然后,某个类又同时继承这两个子类,这种继承被称为菱形继承。菱形继承举例:

菱形继承的问题:

马继承了动物的年龄属性,驴也继承了年龄属性,当骡子用使用年龄属性时,会产生二义性。造成这种问题的原因在于,骡子继承了两份年龄属性,实际上只需要一份就可以了。

代码示例:

// 动物类
class Animal{
public:
    int m_age;
};
// 马
class Horse : public Animal{};
// 驴
class Donkey : public Animal{};
// 骡子
class Mule:public Horse, public Donkey{};
int main(int argc, char* argv[])
{
    Mule m;
    m.Horse::m_age = 10;
    m.Donkey::m_age = 20;
  // 菱形继承时,Mule的两个父类拥有相同的属性,需要加作用域区分
  // 缺点:内存中有两份,资源浪费
    std::cout << "m.Horse::m_age = " << m.Horse::m_age << std::endl;
    std::cout << "m.Donkey::m_age= " << m.Donkey::m_age << std::endl;
    std::cout << "Mule size = " << sizeof(m) << std::endl;
    return 0;
}

运行结果:

分析:因为骡子本身没有属性,分别从马和驴继承了一个int型的年龄属性,所以 size = 8。

4.2 虚继承可以解决菱形继承问题
#include <iostream>
using namespace std;
// 动物类
class Animal{
public:
    int m_age;
};
// 马
// 继承之前加上virtual关键字,变为虚继承,Animal称为虚基类
class Horse : virtual public Animal{};
// 驴
class Donkey : virtual public Animal{};
// 骡子
class Mule:public Horse, public Donkey{};
int main(int argc, char* argv[])
{
    Mule m;
    m.Horse::m_age = 10;  // 先修改马的年龄为10
    m.Donkey::m_age = 20; // 再修改驴的年龄为20
    std::cout << "m.Horse::m_age = " << m.Horse::m_age << std::endl; // 输出 20
    std::cout << "m.Donkey::m_age = " << m.Donkey::m_age << std::endl;
    std::cout << "m.Donkey::m_age = " << m.m_age << std::endl;
    return 0;
}

运行结果分析:

在使用虚继承后,m.Horse::m_age = 20,说明此时的他们的年龄属性,共用的是同一块内存空间,也就解决了菱形继承空间浪费的问题。

文章参考与<零声教育>的C/C++linux服务期高级架构系统教程学习:

相关文章
|
1月前
|
编译器 C++ 开发者
【C++】继承
C++中的继承是面向对象编程的核心特性之一,允许派生类继承基类的属性和方法,实现代码复用和类的层次结构。继承有三种类型:公有、私有和受保护继承,每种类型决定了派生类如何访问基类成员。此外,继承还涉及构造函数、析构函数、拷贝构造函数和赋值运算符的调用规则,以及解决多继承带来的二义性和数据冗余问题的虚拟继承。在设计类时,应谨慎选择继承和组合,以降低耦合度并提高代码的可维护性。
33 1
【C++】继承
|
2月前
|
C++
C++番外篇——对于继承中子类与父类对象同时定义其析构顺序的探究
C++番外篇——对于继承中子类与父类对象同时定义其析构顺序的探究
67 1
|
2月前
|
C++
C++番外篇——虚拟继承解决数据冗余和二义性的原理
C++番外篇——虚拟继承解决数据冗余和二义性的原理
49 1
|
2月前
|
安全 编译器 程序员
C++的忠实粉丝-继承的热情(1)
C++的忠实粉丝-继承的热情(1)
22 0
|
2月前
|
编译器 C++
C++入门11——详解C++继承(菱形继承与虚拟继承)-2
C++入门11——详解C++继承(菱形继承与虚拟继承)-2
41 0
|
29天前
|
存储 编译器 C语言
【c++丨STL】string类的使用
本文介绍了C++中`string`类的基本概念及其主要接口。`string`类在C++标准库中扮演着重要角色,它提供了比C语言中字符串处理函数更丰富、安全和便捷的功能。文章详细讲解了`string`类的构造函数、赋值运算符、容量管理接口、元素访问及遍历方法、字符串修改操作、字符串运算接口、常量成员和非成员函数等内容。通过实例演示了如何使用这些接口进行字符串的创建、修改、查找和比较等操作,帮助读者更好地理解和掌握`string`类的应用。
50 2
|
1月前
|
存储 编译器 C++
【c++】类和对象(下)(取地址运算符重载、深究构造函数、类型转换、static修饰成员、友元、内部类、匿名对象)
本文介绍了C++中类和对象的高级特性,包括取地址运算符重载、构造函数的初始化列表、类型转换、static修饰成员、友元、内部类及匿名对象等内容。文章详细解释了每个概念的使用方法和注意事项,帮助读者深入了解C++面向对象编程的核心机制。
103 5
|
1月前
|
存储 编译器 C++
【c++】类和对象(中)(构造函数、析构函数、拷贝构造、赋值重载)
本文深入探讨了C++类的默认成员函数,包括构造函数、析构函数、拷贝构造函数和赋值重载。构造函数用于对象的初始化,析构函数用于对象销毁时的资源清理,拷贝构造函数用于对象的拷贝,赋值重载用于已存在对象的赋值。文章详细介绍了每个函数的特点、使用方法及注意事项,并提供了代码示例。这些默认成员函数确保了资源的正确管理和对象状态的维护。
90 4
|
1月前
|
存储 编译器 Linux
【c++】类和对象(上)(类的定义格式、访问限定符、类域、类的实例化、对象的内存大小、this指针)
本文介绍了C++中的类和对象,包括类的概念、定义格式、访问限定符、类域、对象的创建及内存大小、以及this指针。通过示例代码详细解释了类的定义、成员函数和成员变量的作用,以及如何使用访问限定符控制成员的访问权限。此外,还讨论了对象的内存分配规则和this指针的使用场景,帮助读者深入理解面向对象编程的核心概念。
108 4
|
2月前
|
存储 编译器 对象存储
【C++打怪之路Lv5】-- 类和对象(下)
【C++打怪之路Lv5】-- 类和对象(下)
32 4