死锁检测组件原理及代码实现

简介: 死锁检测组件原理及代码实现

一、引言

所谓死锁,是指多个线程或进程各自持有某些资源,同时又等待着别的线程或进程释放它们现在所保持的资源,否则就不能向前推进。如下图:线程各自占有一把锁,还需要申请别的线程当前持有的锁,形成锁资源的循环等待,这就是死锁。

从上图中,我们可以看到,死锁一定伴随某种循环资源的赖,也就是形成了闭环,所谓死锁检测,就是只要能检测出环的存在,就能检测到死锁。

二、hook技术

Hook技术又叫做钩子函数,原理是在系统没有调用该函数之前,钩子程序就先捕获该消息,并得到控制权。这时我们就可以在钩子函数执行自己的代码片段。底层原理实际上是利用动态加载的过程中替换原有函数符号的地址,来执行我们自定义的钩子函数。

dlsym函数
void* dlsym(void* handle, char* symbol);

dlsym()函数是动态加载的核心函数,其中,第二个参数就是所要查找的符号。如果找到该符号,返回该符号的值;没有找到返回NULL。它的返回值对于不同类型的符号,意义是不同的。如果查找的是函数,返回的就是函数地址;如果是变量,返回的是变量的地址。

以下为钩子函数的示例:

#define _GNU_SOURCE
#include <dlfcn.h>
typedef int (*pthread_mutex_lock_t)(pthread_mutex_t *mutex);
pthread_mutex_lock_t pthread_mutex_lock_f;
typedef int (*pthread_mutex_unlock_t)(pthread_mutex_t *mutex);
pthread_mutex_unlock_t pthread_mutex_unlock_f;
static int init_hook() {
  // 使用dlsym函数获取系统pthread_mutex_lock和pthread_mutex_unlock的地址
    pthread_mutex_lock_f = dlsym(RTLD_NEXT, "pthread_mutex_lock");
    pthread_mutex_unlock_f = dlsym(RTLD_NEXT, "pthread_mutex_unlock");
}
int pthread_mutex_lock(pthread_mutex_t *mutex) {
    // TODO whatever you want
    pthread_mutex_lock_f(mutex);  // 执行系统真正的pthread_mutex_lock函数
  // TODO whatever you want
}
int pthread_mutex_unlock(pthread_mutex_t *mutex) {
  // TODO whatever you want
    pthread_mutex_unlock_f(mutex);  // 执行系统真正的pthread_mutex_unlock函数
    // TODO whatever you want
}

三、死锁检测原理

这种资源的依赖关系,可以使用数据结构有向图来构建,如果对图不了解的同学戳这里。如线程A想要获取线程B已占有的资源,则建立一条A指向B的关系。有向图可以参考数据结构——图详解及代码实现。

四、死锁检测完整代码实现

#define _GNU_SOURCE
#include <dlfcn.h>
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#define THREAD_NUM      10
typedef unsigned long int uint64;
typedef int (*pthread_mutex_lock_t)(pthread_mutex_t *mutex);
pthread_mutex_lock_t pthread_mutex_lock_f;
typedef int (*pthread_mutex_unlock_t)(pthread_mutex_t *mutex);
pthread_mutex_unlock_t pthread_mutex_unlock_f;
#if 1 // graph
#define MAX   100
enum Type {PROCESS, RESOURCE};
struct source_type {
  uint64 id;
  enum Type type;
  uint64 lock_id;
  int degress;
};
struct vertex {
  struct source_type s;
  struct vertex *next;
};
struct task_graph {
  struct vertex list[MAX];
  int num;
  struct source_type locklist[MAX];
  int lockidx;
  pthread_mutex_t mutex;
};
struct task_graph *tg = NULL;
int path[MAX+1];
int visited[MAX];
int k = 0;
int deadlock = 0;
struct vertex *create_vertex(struct source_type type) {
  struct vertex *tex = (struct vertex *)malloc(sizeof(struct vertex ));
  tex->s = type;
  tex->next = NULL;
  return tex;
}
int search_vertex(struct source_type type) {
  int i = 0;
  for (i = 0;i < tg->num;i ++) {
    if (tg->list[i].s.type == type.type && tg->list[i].s.id == type.id) {
      return i;
    }
  }
  return -1;
}
void add_vertex(struct source_type type) {
  if (search_vertex(type) == -1) {
    tg->list[tg->num].s = type;
    tg->list[tg->num].next = NULL;
    tg->num ++;
  }
}
int add_edge(struct source_type from, struct source_type to) {
  add_vertex(from);
  add_vertex(to);
  struct vertex *v = &(tg->list[search_vertex(from)]);
  while (v->next != NULL) {
    v = v->next;
  }
  v->next = create_vertex(to);
}
int verify_edge(struct source_type i, struct source_type j) {
  if (tg->num == 0) return 0;
  int idx = search_vertex(i);
  if (idx == -1) {
    return 0;
  }
  struct vertex *v = &(tg->list[idx]);
  while (v != NULL) {
    if (v->s.id == j.id) return 1;
    v = v->next;
  }
  return 0;
}
int remove_edge(struct source_type from, struct source_type to) {
  int idxi = search_vertex(from);
  int idxj = search_vertex(to);
  if (idxi != -1 && idxj != -1) {
    struct vertex *v = &tg->list[idxi];
    struct vertex *remove;
    while (v->next != NULL) {
      if (v->next->s.id == to.id) {
        remove = v->next;
        v->next = v->next->next;
        free(remove);
        break;
      }
      v = v->next;
    }
  }
}
void print_deadlock(void) {
  int i = 0;
  printf("deadlock : ");
  for (i = 0;i < k-1;i ++) {
    printf("%ld --> ", tg->list[path[i]].s.id);
  }
  printf("%ld\n", tg->list[path[i]].s.id);
}
int DFS(int idx) {
  struct vertex *ver = &tg->list[idx];
  if (visited[idx] == 1) {
    path[k++] = idx;
    print_deadlock();
    deadlock = 1;
    return 0;
  }
  visited[idx] = 1;
  path[k++] = idx;
  while (ver->next != NULL) {
    DFS(search_vertex(ver->next->s));
    k --;
    ver = ver->next;
  }
  return 1;
}
int search_for_cycle(int idx) {
  struct vertex *ver = &tg->list[idx];
  visited[idx] = 1;
  k = 0;
  path[k++] = idx;
  while (ver->next != NULL) {
    int i = 0;
    for (i = 0;i < tg->num;i ++) {
      if (i == idx) continue;
      visited[i] = 0;
    }
    for (i = 1;i <= MAX;i ++) {
      path[i] = -1;
    }
    k = 1;
    DFS(search_vertex(ver->next->s));
    ver = ver->next;
  }
}
#if 0  
int main() {
  tg = (struct task_graph*)malloc(sizeof(struct task_graph));
  tg->num = 0;
  struct source_type v1;
  v1.id = 1;
  v1.type = PROCESS;
  add_vertex(v1);
  struct source_type v2;
  v2.id = 2;
  v2.type = PROCESS;
  add_vertex(v2);
  struct source_type v3;
  v3.id = 3;
  v3.type = PROCESS;
  add_vertex(v3);
  struct source_type v4;
  v4.id = 4;
  v4.type = PROCESS;
  add_vertex(v4);
  struct source_type v5;
  v5.id = 5;
  v5.type = PROCESS;
  add_vertex(v5);
  add_edge(v1, v2);
  add_edge(v2, v3);
  add_edge(v3, v4);
  add_edge(v4, v5);
  add_edge(v3, v1);
  search_for_cycle(search_vertex(v1));
}
#endif
#endif
void check_dead_lock(void) {
  int i = 0;
  deadlock = 0;
  for (i = 0;i < tg->num;i ++) {
    if (deadlock == 1) break;
    search_for_cycle(i);
  }
  if (deadlock == 0) {
    printf("no deadlock\n");
  }
}
static void *thread_routine(void *args) {
  while (1) {
    sleep(2);
    check_dead_lock();
  }
}
void start_check(void) {
  tg = (struct task_graph*)malloc(sizeof(struct task_graph));
  tg->num = 0;
  tg->lockidx = 0;
  pthread_t tid;
  pthread_create(&tid, NULL, thread_routine, NULL);
}
#if 1
int search_lock(uint64 lock) {
  int i = 0;
  for (i = 0;i < tg->lockidx;i ++) {
    if (tg->locklist[i].lock_id == lock) {
      return i;
    }
  }
  return -1;
}
int search_empty_lock(uint64 lock) {
  int i = 0;
  for (i = 0;i < tg->lockidx;i ++) {
    if (tg->locklist[i].lock_id == 0) {
      return i;
    }
  }
  return tg->lockidx;
}
#endif
int inc(int *value, int add) {
  int old;
  __asm__ volatile(
    "lock;xaddl %2, %1;"
    : "=a"(old)
    : "m"(*value), "a" (add)
    : "cc", "memory"
  );
  return old;
}
void print_locklist(void) {
  int i = 0;
  printf("print_locklist: \n");
  printf("---------------------\n");
  for (i = 0;i < tg->lockidx;i ++) {
    printf("threadid : %ld, lockid: %ld\n", tg->locklist[i].id, tg->locklist[i].lock_id);
  }
  printf("---------------------\n\n\n");
}
void lock_before(uint64 thread_id, uint64 lockaddr) {
  int idx = 0;
  // list<threadid, toThreadid>
  for(idx = 0;idx < tg->lockidx;idx ++) {
    if ((tg->locklist[idx].lock_id == lockaddr)) {
      struct source_type from;
      from.id = thread_id;
      from.type = PROCESS;
      add_vertex(from);
      struct source_type to;
      to.id = tg->locklist[idx].id;
      tg->locklist[idx].degress++;
      to.type = PROCESS;
      add_vertex(to);
      if (!verify_edge(from, to)) {
        add_edge(from, to); // 
      }
    }
  }
}
void lock_after(uint64 thread_id, uint64 lockaddr) {
  int idx = 0;
  if (-1 == (idx = search_lock(lockaddr))) {  // lock list opera 
    int eidx = search_empty_lock(lockaddr);
    tg->locklist[eidx].id = thread_id;
    tg->locklist[eidx].lock_id = lockaddr;
    inc(&tg->lockidx, 1);
  } 
  else 
  {
    struct source_type from;
    from.id = thread_id;
    from.type = PROCESS;
    struct source_type to;
    to.id = tg->locklist[idx].id;
    tg->locklist[idx].degress --;
    to.type = PROCESS;
    if (verify_edge(from, to))
      remove_edge(from, to);
    tg->locklist[idx].id = thread_id;
  }
}
void unlock_after(uint64 thread_id, uint64 lockaddr) {
  int idx = search_lock(lockaddr);
  if (tg->locklist[idx].degress == 0) {
    tg->locklist[idx].id = 0;
    tg->locklist[idx].lock_id = 0;
    //inc(&tg->lockidx, -1);
  }
}
int pthread_mutex_lock(pthread_mutex_t *mutex) {
    pthread_t selfid = pthread_self(); //
  lock_before(selfid, (uint64)mutex);
    pthread_mutex_lock_f(mutex);
  lock_after(selfid, (uint64)mutex);
}
int pthread_mutex_unlock(pthread_mutex_t *mutex) {
  pthread_t selfid = pthread_self();
    pthread_mutex_unlock_f(mutex);
  unlock_after(selfid, (uint64)mutex);
}
static int init_hook() {
    pthread_mutex_lock_f = dlsym(RTLD_NEXT, "pthread_mutex_lock");
    pthread_mutex_unlock_f = dlsym(RTLD_NEXT, "pthread_mutex_unlock");
}
#if 1
pthread_mutex_t mutex_1 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_2 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_3 = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t mutex_4 = PTHREAD_MUTEX_INITIALIZER;
void *thread_rountine_1(void *args)
{
  pthread_t selfid = pthread_self(); //
  printf("thread_routine 1 : %ld \n", selfid);
    pthread_mutex_lock(&mutex_1);
    sleep(1);
    pthread_mutex_lock(&mutex_2);
    pthread_mutex_unlock(&mutex_2);
    pthread_mutex_unlock(&mutex_1);
    return (void *)(0);
}
void *thread_rountine_2(void *args)
{
  pthread_t selfid = pthread_self(); //
  printf("thread_routine 2 : %ld \n", selfid);
    pthread_mutex_lock(&mutex_2);
    sleep(1);
    pthread_mutex_lock(&mutex_3);
    pthread_mutex_unlock(&mutex_3);
    pthread_mutex_unlock(&mutex_2);
    return (void *)(0);
}
void *thread_rountine_3(void *args)
{
  pthread_t selfid = pthread_self(); //
  printf("thread_routine 3 : %ld \n", selfid);
    pthread_mutex_lock(&mutex_3);
    sleep(1);
    pthread_mutex_lock(&mutex_4);
    pthread_mutex_unlock(&mutex_4);
    pthread_mutex_unlock(&mutex_3);
    return (void *)(0);
}
void *thread_rountine_4(void *args)
{
  pthread_t selfid = pthread_self(); //
  printf("thread_routine 4 : %ld \n", selfid);
    pthread_mutex_lock(&mutex_4);
    sleep(1);
    pthread_mutex_lock(&mutex_1);
    pthread_mutex_unlock(&mutex_1);
    pthread_mutex_unlock(&mutex_4);
    return (void *)(0);
}
int main()
{
    init_hook();
  start_check();
  printf("start_check\n");
    pthread_t tid1, tid2, tid3, tid4;
    pthread_create(&tid1, NULL, thread_rountine_1, NULL);
    pthread_create(&tid2, NULL, thread_rountine_2, NULL);
    pthread_create(&tid3, NULL, thread_rountine_3, NULL);
    pthread_create(&tid4, NULL, thread_rountine_4, NULL);
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);
    pthread_join(tid4, NULL);
    return 0;
}
#endif

运行结果:

可以看到检测到了死锁,线程1->2->3->4->1.

文章参考于<零声教育>的C/C++linux服务期高级架构

相关文章
|
10月前
|
存储 Kubernetes 负载均衡
k8s是什么以及它的原理和如何去使用它?
k8s是什么以及它的原理和如何去使用它?
|
2月前
|
编译器 C++ 容器
C++模板的原理及使用
C++模板的原理及使用
|
2月前
|
存储
动手实现死锁检测组件(通过hook与有向图实现)
动手实现死锁检测组件(通过hook与有向图实现)
41 1
|
2月前
|
存储 安全 C语言
|
7月前
|
存储 Kubernetes API
k8s 自身原理 1
k8s 自身原理 1
|
7月前
|
Kubernetes Cloud Native 调度
k8s 自身原理 2
k8s 自身原理 2
|
存储 缓存 算法
四、深入剖析【离屏渲染】原理
深入剖析【离屏渲染】原理
434 0
四、深入剖析【离屏渲染】原理
说了这么多次 I/O,可你知道其中的原理么(二)
现在让我们转向对 I/O 软件的研究,I/O 软件设计一个很重要的目标就是设备独立性(device independence)。啥意思呢?这意味着我们能够编写访问任何设备的应用程序,而不用事先指定特定的设备。
说了这么多次 I/O,可你知道其中的原理么(二)
MinHash原理与应用
MinHash首先它是一种基于 Jaccard Index 相似度的算法,也是一种LSH的降维的方法,应用于大数据集的相似度检索、推荐系统。下边按我的理解介绍下MinHash。 举例A,B 两个集合: A = {s1, s3, s6, s8, s9} B = {s3, s4, s7, s8,
3606 2
|
Android开发
RemoteViews的原理
RemoteViews支持在其他进程显示和更新View,由于RemoteViews没有findViewById的方法,因为它是远程的View,即使有findViewById我们也不知道远程app的资源文件id  所以如果想要更新View的内容 就要使用RemoteViews提供的一系列set方法: RemoteViews方法 RemoteViews每调用用一个set方法都会添加一个Action到Action列表中,Action也是序列化的,也可以通过Binder传到远程。
1168 0