引言
在Reactor (One eventLoop per thread)模型中,一次时间循环可以处理若干个事件,但是这些事件是串行处理的,一个任务若是执行时间过长,会延迟其他任务的处理,在客户端看来就是响应变慢了。线程池就是处理这种耗时场景的方案之一。
一、什么是线程池及作用
为了避免线程的频繁创建和销毁,提前准备好一定数量的线程,并管理起来,有任务就分配一个线程去执行,任务执行结束,不是销毁线程,而是放回到线程池,待下次有任务来继续执行。
作用:
- 实现了线程的复用
- 减少了线程创建和销毁的开销
- 减少多个任务(不是一个任务)的执行时间
二、线程池的应用场景
- 某类任务比较耗时,影响线程执行其他任务;
- 需要异步的执行某类任务;
三、线程池的接口设计
线程池是一个典型的生产者消费模型。有生产者、队列、消费者(线程池),其中队列用于解耦。
- 线程池的创建(线程数量和队列大小)
- 线程池的销毁(线程退出标志和通知所有线程)
- 添加任务(封装任务、入队、通知线程执行)
- 任务调度(mutex、condition)
3.1 线程数量如何确定(经验值)
根据耗时任务的类型,可以将任务分为:
- IO密集型,线程数量为: 2*n + 2(n为CPU核心数)
- CPU密集型 ,线程数量为:CPU核心数
四、线程池在Redis、Nginx中的应用
4.1 Redis中的线程池
Redis是内存数据库,读写数据嘎嘎快。线程池主要用在,读写 io 处理以及数据包解析、压缩部分。
4.2 Nginx中的线程池
Nginx线程池模型,主线程将任务加入任务队列,线程池取任务执行,执行完任务将结果存入完成消息队列,通知主线程获取任务执行结果。
Nginx做静态代理时,作用的位置如下:
五、完整代码示例
5.1 thread_pool.h
#ifndef _THREAD_POOL_H #define _THREAD_POOL_H typedef struct thread_pool_t thread_pool_t; typedef void (*handler_pt) (void *); thread_pool_t *thread_pool_create(int thrd_count, int queue_size); int thread_pool_post(thread_pool_t *pool, handler_pt func, void *arg); int thread_pool_destroy(thread_pool_t *pool); int wait_all_done(thread_pool_t *pool); #endif
5.2 thread_pool.h
#include <pthread.h> #include <stdint.h> #include <stddef.h> #include <stdlib.h> #include "thrd_pool.h" typedef struct task_t { handler_pt func; void * arg; } task_t; typedef struct task_queue_t { uint32_t head; uint32_t tail; uint32_t count; task_t *queue; } task_queue_t; struct thread_pool_t { pthread_mutex_t mutex; pthread_cond_t condition; pthread_t *threads; task_queue_t task_queue; int closed; int started; // 当前运行的线程数 int thrd_count; int queue_size; }; static void * thread_worker(void *thrd_pool); static void thread_pool_free(thread_pool_t *pool); thread_pool_t * thread_pool_create(int thrd_count, int queue_size) { thread_pool_t *pool; if (thrd_count <= 0 || queue_size <= 0) { return NULL; } pool = (thread_pool_t*) malloc(sizeof(*pool)); if (pool == NULL) { return NULL; } pool->thrd_count = 0; pool->queue_size = queue_size; pool->task_queue.head = 0; pool->task_queue.tail = 0; pool->task_queue.count = 0; pool->started = pool->closed = 0; pool->task_queue.queue = (task_t*)malloc(sizeof(task_t)*queue_size); if (pool->task_queue.queue == NULL) { // TODO: free pool return NULL; } pool->threads = (pthread_t*) malloc(sizeof(pthread_t) * thrd_count); if (pool->threads == NULL) { // TODO: free pool return NULL; } int i = 0; for (; i < thrd_count; i++) { if (pthread_create(&(pool->threads[i]), NULL, thread_worker, (void*)pool) != 0) { // TODO: free pool return NULL; } pool->thrd_count++; pool->started++; } return pool; } int thread_pool_post(thread_pool_t *pool, handler_pt func, void *arg) { if (pool == NULL || func == NULL) { return -1; } task_queue_t *task_queue = &(pool->task_queue); if (pthread_mutex_lock(&(pool->mutex)) != 0) { return -2; } if (pool->closed) { pthread_mutex_unlock(&(pool->mutex)); return -3; } if (task_queue->count == pool->queue_size) { pthread_mutex_unlock(&(pool->mutex)); return -4; } task_queue->queue[task_queue->tail].func = func; task_queue->queue[task_queue->tail].arg = arg; task_queue->tail = (task_queue->tail + 1) % pool->queue_size; task_queue->count++; if (pthread_cond_signal(&(pool->condition)) != 0) { pthread_mutex_unlock(&(pool->mutex)); return -5; } pthread_mutex_unlock(&(pool->mutex)); return 0; } static void thread_pool_free(thread_pool_t *pool) { if (pool == NULL || pool->started > 0) { return; } if (pool->threads) { free(pool->threads); pool->threads = NULL; pthread_mutex_lock(&(pool->mutex)); pthread_mutex_destroy(&pool->mutex); pthread_cond_destroy(&pool->condition); } if (pool->task_queue.queue) { free(pool->task_queue.queue); pool->task_queue.queue = NULL; } free(pool); } int wait_all_done(thread_pool_t *pool) { int i, ret=0; for (i=0; i < pool->thrd_count; i++) { if (pthread_join(pool->threads[i], NULL) != 0) { ret=1; } } return ret; } int thread_pool_destroy(thread_pool_t *pool) { if (pool == NULL) { return -1; } if (pthread_mutex_lock(&(pool->mutex)) != 0) { return -2; } if (pool->closed) { thread_pool_free(pool); return -3; } pool->closed = 1; if (pthread_cond_broadcast(&(pool->condition)) != 0 || pthread_mutex_unlock(&(pool->mutex)) != 0) { thread_pool_free(pool); return -4; } wait_all_done(pool); thread_pool_free(pool); return 0; } static void * thread_worker(void *thrd_pool) { thread_pool_t *pool = (thread_pool_t*)thrd_pool; task_queue_t *que; task_t task; for (;;) { pthread_mutex_lock(&(pool->mutex)); que = &pool->task_queue; // 虚假唤醒 linux pthread_cond_signal // linux 可能被信号唤醒 // 业务逻辑不严谨,被其他线程抢了该任务 while (que->count == 0 && pool->closed == 0) { // pthread_mutex_unlock(&(pool->mutex)) // 阻塞在 condition // =================================== // 解除阻塞 // pthread_mutex_lock(&(pool->mutex)); pthread_cond_wait(&(pool->condition), &(pool->mutex)); } if (pool->closed == 1) break; task = que->queue[que->head]; que->head = (que->head + 1) % pool->queue_size; que->count--; pthread_mutex_unlock(&(pool->mutex)); (*(task.func))(task.arg); } pool->started--; pthread_mutex_unlock(&(pool->mutex)); pthread_exit(NULL); return NULL; }
5.2 main.c
#include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <unistd.h> #include "thrd_pool.h" int nums = 0; int done = 0; pthread_mutex_t lock; void do_task(void *arg) { usleep(10000); pthread_mutex_lock(&lock); done++; printf("doing %d task\n", done); pthread_mutex_unlock(&lock); } int main(int argc, char **argv) { int threads = 8; int queue_size = 256; if (argc == 2) { threads = atoi(argv[1]); if (threads <= 0) { printf("threads number error: %d\n", threads); return 1; } } else if (argc > 2) { threads = atoi(argv[1]); queue_size = atoi(argv[1]); if (threads <= 0 || queue_size <= 0) { printf("threads number or queue size error: %d,%d\n", threads, queue_size); return 1; } } thread_pool_t *pool = thread_pool_create(threads, queue_size); if (pool == NULL) { printf("thread pool create error!\n"); return 1; } while (thread_pool_post(pool, &do_task, NULL) == 0) { pthread_mutex_lock(&lock); nums++; pthread_mutex_unlock(&lock); } printf("add %d tasks\n", nums); wait_all_done(pool); printf("did %d tasks\n", done); thread_pool_destroy(pool); return 0; }