TCP滑动窗口、流量控制及拥塞控制详解

简介: TCP滑动窗口、流量控制及拥塞控制详解

一、TCP滑动窗口

TCP虽然是面向字节流的,但是TCP传输的单元确实报文段。一个TCP报文段分为首部和数据部分。TCP首部前20个字节是固定的,后面有4N个字节是可选的。因此,TCP首部最小字节数是20个字节。

下面我们看下一TCP首部中几个重要的字段:

  1. 源端口目的端口 各占两个字节
  2. 序号,占4个字节。序号范围是[0,2^32-1],可以对4GB数据进行编号,到达最大值后,序号会重新从0开始。该序号指的是本报文段所发送数据的第一个字节的序号。
  3. 确认号,占4个字节。期望收到对方数据报的第一个数据字节的序号。举例:假设B收到了A的一个报文,其序列号字段是301,数据长度是200字节,这表示B正确的收到了A发送的500序号为止的所有数据。因此,B期望收到的下一个数据的序号是501,于是B把在回复A的确认报文中的确认字段设置为501。
  4. 确认ACK。当ACK字段为1时,确认号字段才有效。TCP规定,在连接建立后,传输的所有报文段的ACK都必须置1。
  5. 同步SYN。在连接建立时用来同步序列,也就是三次握手的时候会用到。SYN=1,ACK=0,表示这是一个连接请求报文。若对方同一连接,则回复SYN=1,ACK=1。
  6. 终止FIN。当FIN=1时,表示发送方数据已发送完毕,要求释放连接(四次挥手)。
  7. 窗口,表示自己的接收窗口的大小。占两个字节,最大[0,2^32-1],也就是64K。
  8. 选项。长度可变,最大40个字节。当没有使用选项是TCP,首部20占个字节。
1.1 什么是MSS?为什么要有MSS?

最大报文长度MSS(Maxium Segment Size),是每一个TCP报文段中数据字段的最大长度。而一个完整的 TCP报文段 = 数据字段 + 首部长度

为什么要有MSS?因为TCP数据至少要添加20个字节的TCP首部和20个字节的IP首部,才能发送。所以,当发送的数据量少,如一个字节。那么网络的利用率就极低。如果数据太大,会在IP层进行分片。到接收端后还要重组。如果不幸,有数据丢失或者出错,还需要重新发送,导致开销增大。

1.2 随着因特网的发展,又陆续增加了几个选项

窗口扩大选项:互联网早期,窗口大小两个字节,最大64K够用。为了满足发展需要,新增窗口扩大选项,占3个字节。其中有一个字节表示表示移位值S。新的窗口大小位数从16位增加到(16+S),S最大14,故窗口最大值增加到[0,2^30-1].

时间戳选项:占10个字节。其中主要时间戳字段时间戳回送回答字段各占4字节。作用:(1)计算RTT;(2)用于处理序号超过2^32的情况。

选择确认选项:适用于,收到的报文段无差错,只是未按序号,中间还缺少某些序号的数据。选择确认就可以只让发送方发送这些缺少的数据,后面还会详细介绍。

二、TCP滑动窗口

Tcp的滑动窗口是以字节为单位的。

2.1 滑动窗口收发数据流程举例

现在假设发送方A收到了接收方B的确认报文,其中确认字段是31(表示31之前的数据都已收到,需要A从31开始发数据),窗口大小是20。A会根据这两个数据构造出自己的发送窗口,如下:

发送窗口:在没有收到B的确认情况下,A可以连续把窗口内的数据都发出去。发送窗口内的序号都是允许发送的序号。

现假设A又发送了31~41的数据,如下图:

B此时的接受窗口如下:

此时,B虽然收到了32、33的分组,但是没有按序接收,所以B给出的确认只能还是31。

再假设,B按序接收到了31、32、33。B把接收窗口往后往前移动3个序号,同时给A发出确认报文,窗口值仍为20,但是确认号为34。A在收到确认报文后,将自己的发送窗口也往前移动3个序号,注意,B还收到了37 38 40三个分组的数据,但是没有按照顺序,所以先暂存在自己的接收窗口。 如下:

2.2 选择确认SACK原理

假设接收方收到若干不连续的报文段。序号1~ 1000收到了,但1000 ~ 1500没收到。序号1501~ 3000收到了,但30001~ 3500没收到。序号3501~4500又收到了。如果这些序号都在接受窗口内,接受方先收下这些数据,并把这些消息告诉发送方,让发送方不在发送重复数据。

我们可以看到,每个字节块都有左右两个边界,我们只需要告诉发送方这些边界信息,让其从指定序号开始传就达到我们的预期了。

但是,TCP首部没有哪个字段是来描述这些信息的。选择确认选项就派上用场了。如果要使用选择确认,就需要在TCP首部加上允许SACK选项。由于首部选项的长度只有40个字节,每个边界需要4个字节,所以,最多只能传递8个边界。为什么不是5个字节块(10个边界信息)呢?因为这40个字节,还要分出来两个字节,一个用来开启SACK;一个字节用来指出SACK选项占几个字节。

三、TCP流量控制

所谓流量控制就是控制发送方的发送速率,不要太快,让接收方来得及接收处理。利用滑动窗口就可以很方便的在TCP连接上实现对发送方的流量控制。

  • 接收方每次收到数据后,在发送确认的报文的时候,同时告诉发送方自己的接收窗口的大小;
  • 发送方收到确认报文之后,就会调整自己的发送速率,也就是自己的发送窗口大小。当发送方收到win=0时,就会停止发送数据,同时开启一个定时器,每隔一段时间发送探测报文询问接收方是否有空间接受数据,如果收到win>0就发送数据;如果win=0,您先忙,我待会再来问问…

四、拥塞控制

拥塞控制就是防止过多的数据注入网络,导致网络过载。注意与流量控制的区别,流量控制一般是点对点的控制。而拥塞控制是一个全局性的过程,涉及所有的主机和路由器等待。

拥塞控制方法:

4.1 慢开始、拥塞避免

发送方维持一个拥塞窗口cwnd(congestion window)的状态变量。取决于网络拥塞程度,动态变化。发送发控制cwnd的原则:只要网络没出现拥塞就增大cwnd,出现了就减小。

4.1.1 发送方如何判断网络拥塞

当网络出现拥塞时,路由器就要丢弃分组。因此,如果发送方没有按时收到应该到达的确认报文,就认为网络出现拥塞。

4.1.2 算法原理

为方便描述,我们用报文个数作为窗口大小的单位,实际上单位是字节。慢开始的思路就是,刚开始将cwnd设置为一个MSS的数值,每经过一个传输轮次cwnd就加倍。

传输轮次:拥塞窗口所允许的发送的报文都连续发出去,且收到了对已发送的最后一个字节的确认。

因为是加倍(指数)增长,为了防止增长过度引起网络阻塞,还设置一个慢开始门限ssthresh。当cwnd超过ssthresh时,就改为拥塞避免算法,也就是线性缓慢增长。

无论是在慢开始还是拥塞避免阶段,只要发送方判断网络出现拥塞,就会把ssthresh设置为拥塞时发送窗口的一半,cwnd设置为1,重新执行慢开始算法。

4.2 快重传和快恢复

快重传算法要求接收方每收到一个失序的报文段,就立即发出重复确认,目的是使发送方及早知道有报文段丢失。如果发送方连续手动三次重复的确认就立即重传对方未收到的报文。

因为可以收到连续三个重复报文的确认,发送方不认为是网络出现了拥塞。使用快恢复算法。快恢复思路是:把cwnd设置为ssthresh的一半,然后开始拥塞避免算法。

在采用快重传算法时,慢开始算法只在TCP建立连接和网络出现超时的时候使用。

上面的描述都是假定接收方总是有足够的空间接受数据。实际上接收方的空间也是有限的,接收方根据自己的接受能力设置接受窗口rwnd。因此:

发送方窗口 = MIN[rwnd, cwnd]

文章参考于<零声教育>的C/C++linux服务期高级架构


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
2月前
|
缓存 网络协议 算法
TCP的滑动窗口与拥塞控制
【10月更文挑战第7天】这段内容详细介绍了TCP协议中确保数据包可靠传输的机制,包括使用ID确保顺序性与累计确认、发送端与接收端的缓存管理、超时重传策略及自适应重传算法,以及拥塞控制机制如慢启动、拥塞避免和快速重传。
|
2月前
|
网络协议 算法 网络性能优化
【TCP】核心机制:滑动窗口、流量控制和拥塞控制
【TCP】核心机制:滑动窗口、流量控制和拥塞控制
108 2
|
4月前
|
网络协议 算法 网络性能优化
TCP流量控制
【8月更文挑战第19天】
79 1
|
5月前
|
网络协议 算法 程序员
提高网络稳定性的关键:TCP滑动窗口与拥塞控制解析
**TCP可靠传输与拥塞控制概要:** 小米讲解TCP如何确保数据可靠性。TCP通过分割数据、编号段、校验和、流量控制(滑动窗口)和拥塞控制(慢开始、拥塞避免、快重传、快恢复)保证数据安全传输。拥塞控制动态调整窗口大小,防止网络过载,提升效率。当连续收到3个相同ACK时执行快重传,快恢复避免剧烈波动。关注“软件求生”获取更多技术内容。
153 4
提高网络稳定性的关键:TCP滑动窗口与拥塞控制解析
|
6月前
|
网络协议 算法 Linux
TCP是如何进行拥塞控制的?
TCP是如何进行拥塞控制的?
70 1
|
7月前
|
缓存 人工智能 算法
TCP的滑动窗口和拥塞控制
TCP的滑动窗口和拥塞控制
91 0
|
7月前
|
网络协议 算法 网络性能优化
TCP 重传、滑动窗口、流量控制、拥塞控制
TCP 重传、滑动窗口、流量控制、拥塞控制
|
7月前
|
网络协议 安全 Java
【JavaEE初阶】 TCP滑动窗口与流量控制和拥塞控制
【JavaEE初阶】 TCP滑动窗口与流量控制和拥塞控制
|
7月前
|
网络协议 算法 网络性能优化
|
消息中间件 缓存 网络协议
TCP协议的秘密武器:流量控制与拥塞控制
本文将深入探讨TCP协议的关键机制,包括流量控制和拥塞控制,以解密其在网络数据传输中的作用。通过了解TCP协议的工作原理,我们可以更好地理解网络通信的稳定性和可靠性,为我们的网络体验提供更安全、高效的保障。无论您是网络爱好者、技术从业者还是普通用户,本文将为您揭开TCP协议的神秘面纱,带您进入网络传输的奇妙世界。
337 0
TCP协议的秘密武器:流量控制与拥塞控制