Mysql系列-3.Mysql的SQL优化和锁(上)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: Mysql系列-3.Mysql的SQL优化和锁

SQL优化


插入数据


insert


如果我们需要一次性往数据库表中插入多条记录,可以从以下三个方面进行优化。

insert into tb_test values(1,'tom');
insert into tb_test values(2,'cat');
insert into tb_test values(3,'jerry');
.....

1). 优化方案一


批量插入数据

Insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');

2). 优化方案二


手动控制事务

start transaction;
insert into tb_test values(1,'Tom'),(2,'Cat'),(3,'Jerry');
insert into tb_test values(4,'Tom'),(5,'Cat'),(6,'Jerry');
insert into tb_test values(7,'Tom'),(8,'Cat'),(9,'Jerry');
commit;

3). 优化方案三


主键顺序插入,性能要高于乱序插入。

主键乱序插入 : 8 1 9 21 88 2 4 15 89 5 7 3
主键顺序插入 : 1 2 3 4 5 7 8 9 15 21 88 89

顺序插入数据时性能高的原因主要有以下几点:


  1. 磁盘顺序写入:当数据按顺序插入时,数据库系统往往可以将数据按照顺序一次性地写入磁盘,这样可以最大限度地减少磁盘寻址和磁盘头的移动,提高了磁盘的写入效率。
  2. 减少随机IO:随机插入可能导致频繁的随机磁盘读写,而顺序插入则可以减少随机IO的次数,降低了磁盘的读写延迟。
  3. 减少索引维护开销:数据库在插入数据时需要更新相关的索引结构,顺序插入可以减少索引的分裂和维护开销,提高了插入数据的效率。


综上所述,顺序插入数据可以最大程度地优化磁盘IO,减少随机IO,降低索引维护开销,从而提高插入数据的性能。


大批量插入数据


如果一次性需要插入大批量数据(比如: 几百万的记录),使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:

可以执行如下指令,将数据脚本文件中的数据加载到表结构中:

-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
-- 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table tb_user fields
terminated by ',' lines terminated by '\n' ;

主键顺序插入性能高于乱序插入


示例演示:


A. 创建表结构

CREATE TABLE `tb_user` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `username` VARCHAR(50) NOT NULL,
    `password` VARCHAR(50) NOT NULL,
    `name` VARCHAR(20) NOT NULL,
    `birthday` DATE DEFAULT NULL,
    `sex` CHAR(1) DEFAULT NULL,
    PRIMARY KEY (`id`),
    UNIQUE KEY `unique_user_username` (`username`)
) ENGINE=INNODB DEFAULT CHARSET=utf8 ;

B. 设置参数

-- 客户端连接服务端时,加上参数 -–local-infile
mysql –-local-infile -u root -p
-- 设置全局参数local_infile为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;

C. load加载数据

load data local infile '/root/load_user_100w_sort.sql' into table tb_user fields terminated by ',' lines terminated by '\n' ;

我们看到,插入100w的记录,17s就完成了,性能很好。


在load时,主键顺序插入性能高于乱序插入


主键优化


在上一小节,我们提到,主键顺序插入的性能是要高于乱序插入的。 这一小节,就来介绍一下具体的原因,然后再分析一下主键又该如何设计。


1). 数据组织方式


在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。

行数据,都是存储在聚集索引的叶子节点上的。而我们之前也讲解过InnoDB的逻辑结构图:

在InnoDB引擎中,数据行是记录在逻辑结构 page 页中的,而每一个页的大小是固定的,默认16K。那也就意味着, 一个页中所存储的行也是有限的,如果插入的数据行row在该页存储不小,将会存储到下一个页中,页与页之间会通过指针连接。


2). 页分裂


页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据过大,会行溢出),根据主键排列。


A. 主键顺序插入效果


①. 从磁盘中申请页, 主键顺序插入

②. 第一个页没有满,继续往第一页插入

③. 当第一个也写满之后,再写入第二个页,页与页之间会通过指针连接

④. 当第二页写满了,再往第三页写入

B. 主键乱序插入效果


①. 加入1#,2#页都已经写满了,存放了如图所示的数据

②. 此时再插入id为50的记录,我们来看看会发生什么现象


会再次开启一个页,写入新的页中吗?

不会。因为,索引结构的叶子节点是有顺序的。按照顺序,应该存储在47之后。

但是47所在的1#页,已经写满了,存储不了50对应的数据了。 那么此时会开辟一个新的页 3#。

但是并不会直接将50存入3#页,而是会将1#页后一半的数据,移动到3#页,然后在3#页,插入50。

移动数据,并插入id为50的数据之后,那么此时,这三个页之间的数据顺序是有问题的。 1#的下一个页,应该是3#, 3#的下一个页是2#。 所以,此时,需要重新设置链表指针。

上述的这种现象,称之为 “页分裂”,是比较耗费性能的操作。


3). 页合并


目前表中已有数据的索引结构(叶子节点)如下:

当我们对已有数据进行删除时,具体的效果如下:


当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。

当我们继续删除2#的数据记录

当页中删除的记录达到 MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。

删除数据,并将页合并之后,再次插入新的数据21,则直接插入3#页

这个里面所发生的合并页的这个现象,就称之为 “页合并”。


MERGE_THRESHOLD:合并页的阈值,可以自己设置,在创建表或者创建索引时指定。


4). 索引设计原则


  • 满足业务需求的情况下,尽量降低主键的长度。
  • 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键。
  • 尽量不要使用UUID做主键或者是其他自然主键,如身份证号。(有缺商贷,分布式ID)
  • 业务操作时,避免对主键的修改。


order by优化


MySQL的排序,有两种方式:


Using filesort : 通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sortbuffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫 FileSort 排序。


Using index : 通过有序索引顺序扫描直接返回有序数据,这种情况即为 using index,不需要额外排序,操作效率高。


对于以上的两种排序方式,Using index的性能高,而Using filesort的性能低,我们在优化排序操作时,尽量要优化为 Using index。


接下来,我们来做一个测试:


A. 数据准备


把之前测试时,为tb_user表所建立的部分索引直接删除掉

drop index idx_user_phone on tb_user;
drop index idx_user_phone_name on tb_user;
drop index idx_user_name on tb_user;

B. 执行排序SQL

explain select id,age,phone from tb_user order by age ;

explain select id,age,phone from tb_user order by age, phone ;

由于 age, phone 都没有索引,所以此时再排序时,出现Using filesort, 排序性能较低。


C. 创建索引

-- 创建索引
create index idx_user_age_phone_aa on tb_user(age,phone);

D. 创建索引后,根据age, phone进行升序排序

explain select id,age,phone from tb_user order by age;

explain select id,age,phone from tb_user order by age , phone;

建立索引之后,再次进行排序查询,就由原来的Using filesort, 变为了 Using index,性能就是比较高的了。


E. 创建索引后,根据age, phone进行降序排序

explain select id,age,phone from tb_user order by age desc , phone desc ;

也出现 Using index, 但是此时Extra中出现了 Backward index scan,这个代表反向扫描索引,因为在MySQL中我们创建的索引,默认索引的叶子节点是从小到大排序的,而此时我们查询排序时,是从大到小,所以,在扫描时,就是反向扫描,就会出现 Backward index scan。 在MySQL8版本中,支持降序索引,我们也可以创建降序索引。


Mysql系列-3.Mysql的SQL优化和锁(中):https://developer.aliyun.com/article/1414564

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
1月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
180 6
|
2月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
|
2月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
2月前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
2月前
|
SQL 监控 关系型数据库
查寻MySQL或SQL Server的连接数,并配置超时时间和最大连接量
以上步骤提供了直观、实用且易于理解且执行的指导方针来监管和优化数据库服务器配置。务必记得,在做任何重要变更前备份相关配置文件,并确保理解每个参数对系统性能可能产生影响后再做出调节。
349 11
|
2月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
|
2月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
128 3
|
2月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
3月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
2月前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。

推荐镜像

更多
下一篇
oss云网关配置