boost asio异步小析

简介: boost asio异步小析

要注意的是,只有io_service类的run()方法运行之后回调对象才会被调用,否则即使系统已经完成了异步操作也不会有任 务动作。

好了,就介绍到这里,下面是我带来的异步方式TCP Helloworld服务器端:

#include <iostream>
#include <string>
#include <boost/asio.hpp>
#include <boost/bind.hpp>
#include <boost/smart_ptr.hpp>
using namespace boost::asio;
using boost::system::error_code;
using ip::tcp;
struct CHelloWorld_Service{
     CHelloWorld_Service(io_service &iosev)
         :m_iosev(iosev),m_acceptor(iosev, tcp::endpoint(tcp::v4(), 1000))
     {
     }
    void start()
     {
        // 开始等待连接(非阻塞)
         boost::shared_ptr<tcp::socket> psocket(new tcp::socket(m_iosev));
        // 触发的事件只有error_code参数,所以用boost::bind把socket绑定进去
         m_acceptor.async_accept(*psocket,
             boost::bind(&CHelloWorld_Service::accept_handler,this, psocket, _1)
             );
     }
    // 有客户端连接时accept_handler触发
    void accept_handler(boost::shared_ptr<tcp::socket> psocket, error_code ec)
     {
        if(ec) return;
        // 继续等待连接
         start();
        // 显示远程IP
         std::cout << psocket->remote_endpoint().address() << std::endl;
        // 发送信息(非阻塞)
         boost::shared_ptr<std::string> pstr(new std::string("hello async world!"));
         psocket->async_write_some(buffer(*pstr),
             boost::bind(&CHelloWorld_Service::write_handler, this, pstr, _1, _2)
             );
     }
    // 异步写操作完成后write_handler触发
    void write_handler(boost::shared_ptr<std::string> pstr,
         error_code ec, size_t bytes_transferred)
     {
        if(ec)
             std::cout<< "发送失败!" << std::endl;
        else
             std::cout<< *pstr << " 已发送" << std::endl;
     }
private:
     io_service &m_iosev;
     ip::tcp::acceptor m_acceptor;
};
int main(int argc, char* argv[])
{
     io_service iosev;
     CHelloWorld_Service sev(iosev);
    // 开始等待连接
     sev.start();
     iosev.run();
    return 0;
}

在这个例子中,首先调用sev.start()开 始接受客户端连接。由于async_accept调 用后立即返回,start()方 法 也就马上完成了。sev.start()在 瞬间返回后iosev.run()开 始执行,iosev.run()方法是一个循环,负责分发异步回调事件,只 有所有异步操作全部完成才会返回。

这里有个问题,就是要保证start()方法中m_acceptor.async_accept操 作所用的tcp::socket对 象 在整个异步操作期间保持有效(不 然系统底层异步操作了一半突然发现tcp::socket没了,不是拿人家开涮嘛-_-!!!),而且客户端连接进来后这个tcp::socket对象还 有用呢。这里的解决办法是使用一个带计数的智能指针boost::shared_ptr<tcp:: socket>,并把这个指针作为参数绑定到回调函数上。

一旦有客户连接,我们在start()里给的回调函数accept_handler就会被 调用,首先调用start()继续异步等待其 它客户端的连接,然后使用绑定进来的tcp::socket对象与当前客户端通信。

发送数据也使用了异步方式(async_write_some), 同样要保证在整个异步发送期间缓冲区的有效性,所以也用boost::bind绑定了boost::shared_ptr<std:: string>。

相关文章
|
5月前
|
C++
boost asio异步和stl异步的简单对比
boost asio异步和stl异步的简单对比
|
5月前
boost异步
boost异步
|
11月前
19.10 Boost Asio 同步文件传输
在原生套接字编程中我们介绍了利用文件长度来控制文件传输的方法,本节我们将采用另一种传输方式,我们通过判断字符串是否包含`goodbye lyshark`关键词来验证文件是否传输结束了,当然了这种传输方式明显没有根据长度传输严谨,但使用这种方式也存在一个有点,那就是无需确定文件长度,因为无需读入文件所以在传输速度上要快一些,尤其是面对大文件时。服务端代码如下所示,在代码中我们分别封装实现`recv_remote_file`该函数用于将远程特定目录下的文件拉取到本地目录下,而`send_local_file`函数则用于将一个本地文件传输到对端主机上,这两个函数都接收三个参数,分别是套接字句柄,本地
88 0
19.10 Boost Asio 同步文件传输
|
11月前
19.3 Boost Asio 多线程通信
多线程服务依赖于两个通用函数,首先`boost::bind`提供了一个高效的、简单的方法来创建函数对象和函数对象适配器,它的主要功能是提供了一种将函数和它的参数绑定到一起的方法,这种方法可以将具有参数的成员函数、普通函数以及函数对象转化为不带参数的函数对象。当参数绑定后则下一步就需要使用多线程功能,Boost库中提供了`boost::thread`库,`boost::thread`可以用于创建线程、启动线程、等待线程执行结束以及线程间通信等多种操,有了这两个关键库那么我们只需要`accept.accept(*sock)`等待套接字上线,当有套接字上线后则自动创建`MyThread`子线程,
89 0
19.3 Boost Asio 多线程通信
|
10月前
|
设计模式 网络协议 Java
C++ Boost 异步网络编程基础
Boost库为C++提供了强大的支持,尤其在多线程和网络编程方面。其中,Boost.Asio库是一个基于前摄器设计模式的库,用于实现高并发和网络相关的开发。Boost.Asio核心类是`io_service`,它相当于前摄模式下的`Proactor`角色。所有的IO操作都需要通过`io_service`来实现。在异步模式下,程序除了发起IO操作外,还需要定义一个用于回调的完成处理函数。`io_service`将IO操作交给操作系统执行,但它不同步等待,而是立即返回。调用`io_service`的`run`成员函数可以等待异步操作完成。当异步操作完成时,`io_service`会从操作系统获取结
117 1
C++ Boost 异步网络编程基础
|
5月前
|
前端开发
muduo源码剖析之AsyncLogging异步日志类
AsyncLogging是muduo的日志,程序如果直接让文件写日志可能会发生阻塞,muduo前端设计了2个BufferPtr,分别是currentBuffer_和nextBuffer_,还有一个存放BufferPtr的vector(buffers_)。多个前端线程往currentBuffer_写数据,currentBuffer_写满了将其放入buffers_,通知后端线程读。前端线程将currentBuffer_和nextBuffer_替换继续写currentBuffer_。
57 0
|
5月前
|
Linux 程序员 C++
【C++ 常见的异步机制】探索现代异步编程:从 ASIO 到协程的底层机制解析
【C++ 常见的异步机制】探索现代异步编程:从 ASIO 到协程的底层机制解析
809 2
|
存储 Windows
asio源码解析
基于1.57版本
186 0
asio源码解析
|
存储 设计模式 Java
4.7 C++ Boost 多线程并发库
C++语言并没有对多线程与网络的良好支持,虽然新的C++标准加入了基本的`thread`库,但是对于并发编程的支持仍然很基础,Boost库提供了数个用于实现高并发与网络相关的开发库这让我们在开发跨平台并发网络应用时能够像Java等语言一样高效开发。 thread库为C++增加了多线程处理能力,其主要提供了清晰的,互斥量,线程,条件变量等,可以很容易的实现多线程应用开发,而且该库是可跨平台的,并且支持`POSIX`和`Windows`线程。
162 0
|
5月前
boost asio多线程
boost asio多线程