Flink CDC HBase字段类型与Flink SQL类型之间的转换

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【1月更文挑战第4天】【1月更文挑战第19篇】Flink CDC HBase字段类型与Flink SQL类型之间的转换

Flink CDC HBase字段类型与Flink SQL类型之间的转换可以通过以下Java代码实现:

import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.LogicalType;
import org.apache.flink.table.types.logical.RowType;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.util.Bytes;

public class FlinkCDCHBaseTypeConverter {
   

    public static Object convertHBaseFieldToFlinkSQLType(Result result, String columnName, DataType dataType) {
   
        Object value = result.getValue(Bytes.toBytes(columnName), dataType.getTypeID().toString());
        if (value == null) {
   
            return null;
        }

        switch (dataType.getTypeID()) {
   
            case BOOLEAN:
                return Boolean.parseBoolean(value.toString());
            case TINYINT:
                return Short.parseShort(value.toString());
            case SMALLINT:
                return Integer.parseInt(value.toString());
            case INTEGER:
                return Long.parseLong(value.toString());
            case BIGINT:
                return BigInteger.valueOf(Long.parseLong(value.toString()));
            case FLOAT:
                return Float.parseFloat(value.toString());
            case DOUBLE:
                return Double.parseDouble(value.toString());
            case DECIMAL:
                return new BigDecimal(value.toString());
            case CHAR:
                return value.toString();
            case VARCHAR:
                return value.toString();
            case DATE:
                return Date.valueOf(value.toString());
            case TIMESTAMP:
                return Timestamp.valueOf(value.toString());
            case TIME:
                return Time.valueOf(value.toString());
            case BINARY:
                return Bytes.toBytes(value.toString());
            case ARRAY:
                return convertArrayHBaseFieldToFlinkSQLType(result, columnName, (RowType) dataType);
            case MAP:
                return convertMapHBaseFieldToFlinkSQLType(result, columnName, (RowType) dataType);
            case STRUCT:
                return convertStructHBaseFieldToFlinkSQLType(result, columnName, (RowType) dataType);
            default:
                throw new IllegalArgumentException("Unsupported Flink SQL type: " + dataType);
        }
    }

    private static Object[] convertArrayHBaseFieldToFlinkSQLType(Result result, String columnName, RowType arrayType) {
   
        // TODO: Implement conversion for HBase Array field type to Flink SQL Array type
        throw new UnsupportedOperationException("Conversion for HBase Array field type to Flink SQL Array type not implemented");
    }

    private static Object[] convertMapHBaseFieldToFlinkSQLType(Result result, String columnName, RowType mapType) {
   
        // TODO: Implement conversion for HBase Map field type to Flink SQL Map type
        throw new UnsupportedOperationException("Conversion for HBase Map field type to Flink SQL Map type not implemented");
    }

    private static Object[] convertStructHBaseFieldToFlinkSQLType(Result result, String columnName, RowType structType) {
   
        // TODO: Implement conversion for HBase Struct field type to Flink SQL Struct type
        throw new UnsupportedOperationException("Conversion for HBase Struct field type to Flink SQL Struct type not implemented");
    }
}

这个代码示例提供了一个名为FlinkCDCHBaseTypeConverter的类,其中包含一个名为convertHBaseFieldToFlinkSQLType的静态方法。这个方法接受一个Result对象、一个列名和一个DataType对象作为参数,并根据HBase字段类型将其转换为相应的Flink SQL类型。请注意,这个示例仅实现了部分类型的转换,您需要根据实际需求实现其他类型的转换。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
22天前
|
SQL 消息中间件 分布式计算
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析
57 5
|
2月前
|
算法 API Apache
Flink CDC:新一代实时数据集成框架
本文源自阿里云实时计算团队 Apache Flink Committer 任庆盛在 Apache Asia CommunityOverCode 2024 的分享,涵盖 Flink CDC 的概念、版本历程、内部实现及社区未来规划。Flink CDC 是一种基于数据库日志的 CDC 技术实现的数据集成框架,能高效完成全量和增量数据的实时同步。自 2020 年以来,Flink CDC 经过多次迭代,已成为功能强大的实时数据集成工具,支持多种数据库和数据湖仓系统。未来将进一步扩展生态并提升稳定性。
499 1
Flink CDC:新一代实时数据集成框架
|
2月前
|
消息中间件 canal 数据采集
Flink CDC 在货拉拉的落地与实践
陈政羽在Apache Asia Community Over Code 2024上分享了《货拉拉在Flink CDC生产实践落地》。文章介绍了货拉拉业务背景、技术选型及其在实时数据采集中的挑战与解决方案,详细阐述了Flink CDC的技术优势及在稳定性、兼容性等方面的应用成果。通过实际案例展示了Flink CDC在提升数据采集效率、降低延迟等方面的显著成效,并展望了未来发展方向。
514 14
Flink CDC 在货拉拉的落地与实践
|
3月前
|
Oracle 关系型数据库 新能源
Flink CDC 在新能源制造业的实践
本文撰写自某新能源企业的研发工程师 单葛尧 老师。本文详细介绍该新能源企业的大数据平台中 CDC 技术架构选型和 Flink CDC 的最佳实践。
437 13
Flink CDC 在新能源制造业的实践
|
22天前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
86 0
|
3月前
|
调度 流计算
Flink 新一代流计算和容错问题之Flink 中的数据可以分为什么类型
Flink 新一代流计算和容错问题之Flink 中的数据可以分为什么类型
|
3月前
|
SQL 数据库 流计算
Flink CDC数据读取问题之一致性如何解决
Flink CDC 使用Change Data Capture (CDC)技术从数据库捕获变更事件,并利用Flink的流处理能力确保数据读取一致性。相较于传统工具,它具备全增量一体化数据集成能力,满足实时性需求。在实践中解决了高效数据同步、稳定同步大量表数据等问题。应用场景包括实时数据同步、实时数据集成等。快速上手需学习基本概念与实践操作。未来发展方向包括提升效率与稳定性,并依据用户需求持续优化。
111 1
|
2月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
4月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
92 13
|
4月前
|
SQL
解锁 SQL Server 2022的时间序列数据功能
【7月更文挑战第14天】要解锁SQL Server 2022的时间序列数据功能,可使用`generate_series`函数生成整数序列,例如:`SELECT value FROM generate_series(1, 10)。此外,`date_bucket`函数能按指定间隔(如周)对日期时间值分组,这些工具结合窗口函数和其他时间日期函数,能高效处理和分析时间序列数据。更多信息请参考官方文档和技术资料。