【论文速递】CVPR2022-Blind2Unblind:具有可见盲点的自监督图像去噪

简介: 【论文速递】CVPR2022-Blind2Unblind:具有可见盲点的自监督图像去噪

【论文原文】:Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots

论文:https://arxiv.org/abs/2203.06967
代码:https://github.com/demonsjin/Blind2Unblind

博主关键词:自监督、图像去噪

推荐相关论文


摘要


大规模真正的噪声清洁对成本高昂且难以获得。同时,在合成数据上训练的监督降噪器在实践中表现不佳。自监督降噪器仅从单个噪声图像中学习,解决了数据收集问题。然而,自监督去噪方法,尤其是盲点驱动的方法,在输入或网络设计过程中会遭受相当大的信息损失。缺乏有价值的信息会大大降低降噪性能的上限。在本文中,我们提出了一种名为Blind2Unblind的简单而有效的方法,以克服盲点驱动的去噪方法中的信息损失。首先,我们介绍了一种全局感知的掩模映射器,它可以实现全局感知并加速训练。掩模映射器对去噪体积上盲点的所有像素进行采样,并将它们映射到同一通道,从而允许损失函数一次优化所有盲点。其次,我们提出了一种重新可见的损失来训练去噪网络并使盲点可见。降噪器可以直接从原始噪声图像中学习,而不会丢失信息或陷入身份映射。我们还从理论上分析了重新可见损失的收敛性。在合成和真实世界数据集上进行的广泛实验表明,与以前的工作相比,我们的方法具有卓越的性能。代码可在 https://github.com/demonsjin/Blind2Unblind 获得。


简介


图像去噪是低级图像处理的一项基本任务,旨在消除噪声并恢复干净的图像。在视觉应用中,去噪质量会显著影响下游任务的性能,例如超分辨率、语义分割和对象检测。此外,降噪器可以显著提高手机和其他设备捕获的图像质量,反映了成像领域的广泛需求。

随着神经网络的发展,基于学习的降噪器最近显示出优于传统方法的性能。然而,受监督的降噪器,例如U-Net,DnCNN,FFDNet,RIDNet,SANet,依赖于许多噪声清洁对,这些对既昂贵又难以收集。一旦处理未知噪声模式,降噪器的性能就会急剧下降。然后,Lehtinen等人建议直接从损坏的图像对中恢复干净的信号。使用损坏的对可以降低数据收集的难度,但对于具有变形和图像质量变化的动态场景来说仍然具有挑战性。

为了减轻上述限制,从单个噪声图像中学习的自监督去噪引起了研究人员的极大兴趣。Ulyanov等人仅从单个噪声图像中学习深层先验。也就是说,每个降级的图像都必须从头开始训练。手动遮罩,例如 Noise2Self 、Noise2Void,可避免为每个图像进行自定义去噪。由于输入上的盲点占据大面积,预测像素的感受野会丢失许多有价值的上下文,从而导致性能不佳。此外,在每次迭代中优化部分像素会导致收敛缓慢。Laine等人设计了一个盲点网络,在四个方向上绑定感受野,而不是手动掩蔽。掩码卷积加速了训练,并增加了除盲点之外的所有区域的感受野。同样,扩张盲点网络在不掩盖输入的情况下在感受野上设置盲点。无论是屏蔽输入还是盲点网络,较低的精度都会限制实际应用。贝叶斯估计用于显式噪声建模作为后处理。但是,噪声建模在具有复杂模式的实际数据上表现不佳。一些作品对噪声较多的噪声对执行降噪,即使额外的噪声会增加信息丢失,并要求额外的噪声具有与原始噪声相同的分布。随后,Pang等人开发了一种具有已知噪声水平的数据增强技术,以解决由于缺乏真实图像而导致的过度拟合。最近,Huang等人建议使用从同一噪声图像中子采样的训练对来训练网络。但是,使用子采样对进行监督会导致过度平滑,因为相邻像素是近似的。在本文中,我们提出了Blind2Unblind,一种克服上述限制的新型自我监督去噪框架。我们的框架包括基于掩模驱动采样的全局感知掩模映射器和基于重新可见损失的无盲点训练策略。具体来说,我们将每个嘈杂图像划分为块,并将每个块中的特定像素设置为盲点,以便我们可以获得全局屏蔽体积作为输入,该体积由一组带有阶次掩码的图像组成。然后,具有全局掩码的卷以同一批次的形式馈送到网络中。全局映射器在盲点对去噪体积进行采样,并将其投影到同一平面上以生成去噪图像。该操作加快了训练速度,实现了全局优化,并允许应用重新可见的损失。然而,遮罩图像会导致大量有价值的信息丢失,严重降低去噪性能的上限。因此,我们考虑从没有遮罩的原始嘈杂图像中学习,并从身份映射中解脱出来。此外,必须引入梯度更新的中间媒介,因为原始噪声图像在训练过程中不能参与反向传播。我们假设遮罩图像作为一种媒介,并提出一种重新可见的损失,以实现从盲点去噪到非盲去噪的过渡。所提出的自监督去噪框架不涉及噪声模型或去除有价值的信息,显示出令人惊讶的性能。此外,先进的模型可以应用于我们提出的方法。我们工作的贡献如下:

  1. 我们提出了一种新的自监督去噪框架,该框架使盲点可见,没有子样本,噪声模型先验和恒等映射。
  2. 我们提供了对重新可见损失的理论分析,并提出了其收敛的上限和下限。
  3. 与最先进的方法相比,我们的方法显示出卓越的性能,尤其是在具有复杂噪声模式的真实数据集上。

640.png


图1 我们提出的Blind2Unblind框架概述。(a)整体培训过程。全局掩模器\Omega_{(·)}通过向噪声图像y添加盲点来创建遮罩体积。然后,全局感知掩模映射器对去噪体积进行采样,以获得h(f_{\theta}(\Omega_y))。同时,去噪器f_{\theta}(·)y为输入,产生去噪结果f_{\theta}(y)。再可见损失以不见项h(f_{\theta}(\Omega_y))为媒介实现了从盲到可见的转变。此外,常规项用于稳定训练阶段。(b)使用训练的去噪模型进行推理。去噪网络直接从噪声图像y中生成去噪图像,无需额外操作。

相关文章
|
机器学习/深度学习 监控 算法
【论文速递】CVPR2022-基于双重对比学习的非配对深度图像去噪
【论文速递】CVPR2022-基于双重对比学习的非配对深度图像去噪
嵌入式开发常用的接口和通信协议
本文介绍了嵌入式开发中常见的接口和通信协议,如串口(UART)、COM口、USB口及TTL、RS-232、RS-485电平标准。串口、UART口、COM口和USB口指物理接口,而TTL、RS-232、RS-485则指电平标准。UART通常用于微控制器的串口通信,采用TTL电平;PC的COM口使用RS-232电平。RS-232使用负电压,而RS-485采用差分信号,适合长距离和抗干扰通信。
735 2
|
存储 前端开发 Java
【开题报告】基于SpringBoot的非文化遗产宣传平台的设计与实现
【开题报告】基于SpringBoot的非文化遗产宣传平台的设计与实现
919 0
|
机器学习/深度学习 人工智能 数据挖掘
AlexNet架构解析
AlexNet是2012年ImageNet图像分类竞赛的冠军,首次将卷积神经网络CNN和深度学习用于大规模图像分类并且性能优异,在今天也具有一定的参考价值。
1074 0
AlexNet架构解析
|
机器学习/深度学习 Web App开发 编解码
最高增强至1440p,阿里云发布端侧实时超分工具,低成本实现高画质
近日,阿里云机器学习PAI团队发布一键端侧超分工具,可实现在设备和网络带宽不变的情况下,将移动端视频分辨率提升1倍,最高可增强至1440p,将大幅提升终端用户的观看体验,该技术目前已在优酷、夸克、UC浏览器等多个APP中广泛应用。
最高增强至1440p,阿里云发布端侧实时超分工具,低成本实现高画质
|
9月前
|
人工智能 负载均衡 并行计算
DeepSeek-V3 高效训练关键技术分析
本文从模型架构、并行策略、通信优化和显存优化四个方面展开,深入分析了DeepSeek-V3高效训练的关键技术,探讨其如何以仅5%的算力实现对标GPT-4o的性能。
1503 146
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
4786 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
机器学习/深度学习 监控 算法
深度学习之图像去噪与去模糊
基于深度学习的图像去噪和去模糊是计算机视觉中的重要任务,旨在提升图像质量,去除噪声和模糊。
728 3
|
机器学习/深度学习 并行计算 PyTorch
ONNX 优化技巧:加速模型推理
【8月更文第27天】ONNX (Open Neural Network Exchange) 是一个开放格式,用于表示机器学习模型,使模型能够在多种框架之间进行转换。ONNX Runtime (ORT) 是一个高效的推理引擎,旨在加速模型的部署。本文将介绍如何使用 ONNX Runtime 和相关工具来优化模型的推理速度和资源消耗。
6535 4
|
分布式计算 Hadoop 大数据
28个大数据的高级工具汇总
文章汇总了28种大数据高级工具,并对Hadoop、Spark、Storm等关键技术进行了详细介绍,同时还提供了获取大数据集的多个资源链接。
680 0