对AI毫无了解?本文带你轻松了解AI

简介: 对AI一无所知?别担心,看完这篇文,AI的基本知识收入囊中。

更多深度文章,请关注:https://yq.aliyun.com/cloud


我们首先应该给出一个人工智能的整体定义。问题是,这样一个独特的、清晰的定义不存在于AI研究者的社区! (最重要的是,了解和定义智能本身仍然是一个持续的努力。)

3种定义人工智能的方法

事实上,有几种方法来考虑什么是AI。 第一个也是最常见的是看看人工智能研究的热门结果:粗略地说,“创造和研究机器的行为表现为智能”或“创造和研究机器思考”。

定义AI的第二种方式是通过查看它的组件或子问题,它的目的是解决。你最常听到的是:

ce94b8338b6a4fa722f28d430e0ae24079246bc8

我们不能抵制添加一种更加文化或志同的方式来定义人工智能,由Astro Teller(现为X的首席执行官,Alphabet的“moonshot工厂”)在1998年建议:“AI是科学如何让机器去做他们的电影的东西。”

事实上,这个定义并不远离人工智能(或强AI或全AI)和人工超智能的概念,其中的例子在科幻小说的作品中很多。他们指定的通才系统将分别达到或超过人类的能力——也就是说,将结合我们刚刚列出的所有组件。

如今AI评论员中最受欢迎的娱乐之一就是试图猜测Skynet什么时候将接管。 如果你注意到关于通用人工智能和人工超智能的预测之间有很大的差异,这是完全正常的——真的很难说,这样的预测是否低于还是过高估计,这样的水平的机器智能是否甚至可以实现。

人工智能的2种主要方法

自从20世纪50年代人工智能开始以来,已经采用了两种方法:

28242596b73619c61113b4eabae4a11f41d89d73

在第一种方法中,你编程规则,通过步骤树解决问题——人工智能的先驱,许多逻辑学家,喜欢这种方法。 它在20世纪80年代达到高潮,随着专家系统的兴起,旨在封装从狭窄领域的专家获取的知识库和决策引擎,以帮助有机化学家识别未知分子。

问题是,使用这样的系统,你必须从头开始开发一个新的模式——手写,特定的规则本质上非常困难或完全不可能从一个问题推广到下一个,从语音识别到医疗诊断。

c2e4333b1f5849e35b6c0cc98471f4e2f6c7a08e

在第二种方法中,你编写一个通用模型,但它是计算机使用你提供的数据调整模型的参数。 这是最近最流行的方法。

它的一些模型真的接近统计方法,但最有名的是受神经科学的启发:他们被称为人工神经网络(或ANNs)。 这样的ANN具有一个共同的通用方法:

b83daafbd0812399933ff1b3bec2f4c23d1cc323

如果你听说过当前的深度学习的狂潮,那是因为这种类型的ANN由大量的图层组成,因此“深”。它在诸如识别图像中的对象的任务中产生了显着的结果。

此外,你可能会遇到以下3种方法之一来对机器学习模型进行分类:

  1. 监督学习:为模型提供标签数据。例如,一个常规的猫图像附带一个明确的“猫”标签。
  2. 无监督学习:为模型提供无标签数据,并让它自己识别模式。 由于数据通常没有标签,需要考虑智能手机中积累的所有照片,标签过程需要时间,无监督学习方法更难/欠发达,看起来比受监管的学习更有前途。
  3. 强化学习:在你的模型的每次迭代结束时,你只需给它一个“等级”。 让我们以DeepMind为例,训练一个模型来玩老阿塔里游戏:等级是游戏显示的分数,模型逐渐学会最大化。 强化学习方法可能是三个中最不发达的,但DeepMind算法的最近的成就已经揭示了这一努力的新的希望。

人工智能分类特点

所以,当你将人工智能研究所解决的问题、各种各样的“思想流派”、这些流派的分支机构、各种目标和灵感来源结合起来时,你就会明白为什么对组织进行分类的尝试总是有缺陷的。看看这个,你看到问题了吗?

a4d4863c05be4b7a9ed6cfa883c0bfd364dc4aca

“机器学习”和“语音”置于同一水平是不准确的,因为你可以使用机器学习模型来解决语音问题——它们不是并行分支,而是不同的方式来分类AI

因此,人工智能领域的困难和吸引人在于,它肯定不是一个有序的树——而是一个灌木丛。 一个分枝比另一个分枝生长得快,并且处于显要地位,然后是另一个转弯,等等。一些分支已经交叉,其他分支没有,一些分支已经被切割,并且新的分支将出现。

因此我们的建议是:永远不要忘记大局,否则你会迷路的!


作者介绍:Tom MorisseFABERNOVEL的研究经理,所在地区法国 巴黎地区所属行业风险投资和私募股权曾经就职于CIGALESBridgepoint等公司。

以上为译文

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。

文章原标题《AI for Dummies》,作者:Tom Morisse,译者:tiamo_zn,审校:主题曲(身行)。

文章为简译,更为详细的内容,请查看原文

目录
相关文章
|
人工智能 异构计算 Python
字节跳动最新研究AI项目:一张图片组合一组动作就可以生成毫无违和感的视频!
字节跳动最新研究AI项目:一张图片组合一组动作就可以生成毫无违和感的视频!
295 0
|
机器学习/深度学习 人工智能
对AI毫无了解?本文带你轻松了解AI
对AI一无所知?别担心,看完这篇文,AI的基本知识收入囊中。
8210 0
|
6天前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
|
6天前
|
数据采集 人工智能 前端开发
Playwright与AI智能体的网页爬虫创新应用
厌倦重复测试与低效爬虫?本课程带您掌握Playwright自动化工具,并融合AI大模型构建智能体,实现网页自主分析、决策与数据提取,完成从脚本执行到智能架构的能力跃升。
|
6天前
|
人工智能 运维 安全
聚焦 AI 应用基础设施,云栖大会 Serverless AI 全回顾
2025 年 9 月 26 日,为期三天的云栖大会在杭州云栖小镇圆满闭幕。随着大模型技术的飞速发展,我们正从云原生时代迈向一个全新的 AI 原生应用时代。为了解决企业在 AI 应用落地中面临的高成本、高复杂度和高风险等核心挑战,阿里云基于函数计算 FC 发布一系列重磅服务。本文将对云栖大会期间 Serverless+AI 基础设施相关内容进行全面总结。
|
7天前
|
设计模式 机器学习/深度学习 人工智能
AI-Native (AI原生)图解+秒懂: 什么是 AI-Native 应用(AI原生应用)?如何设计一个 AI原生应用?
AI-Native (AI原生)图解+秒懂: 什么是 AI-Native 应用(AI原生应用)?如何设计一个 AI原生应用?
|
8天前
|
人工智能 负载均衡 API
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
大家好,我是Immerse,独立开发者、AGI实践者。分享编程、AI干货、开源项目与个人思考。关注公众号“沉浸式趣谈”,获取独家内容。Vercel新推出的AI Gateway,统一多模型API,支持自动切换、负载均衡与零加价调用,让AI开发更高效稳定。一行代码切换模型,告别接口烦恼!
98 1
Vercel 发布 AI Gateway 神器!可一键访问数百个模型,助力零门槛开发 AI 应用
|
11天前
|
边缘计算 人工智能 算法
AI在智慧能源管理中的边缘计算应用
AI在智慧能源管理中的边缘计算应用
79 13
|
11天前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。

热门文章

最新文章