【论文速递】Arxiv2018 - 加州伯克利大学借助引导网络实现快速、准确的小样本分割

简介: 【论文速递】Arxiv2018 - 加州伯克利大学借助引导网络实现快速、准确的小样本分割

【论文速递】Arxiv2018 - 加州伯克利大学借助引导网络实现快速、准确的小样本分割

【论文原文】:Few-Shot Segmentation Propagation with Guided Networks

作者信息】:Kate Rakelly∗ Evan Shelhamer∗ Trevor Darrell Alexei Efros Sergey Levine

获取地址:https://arxiv.org/pdf/1806.07373

博主关键词: 小样本学习,语义分割,引导网络

推荐相关论文:

【论文精选】TPAMI2020 - PFENet_先验引导的特征富集网络_小样本语义分割
- https://phoenixash.blog.csdn.net/article/details/128720119

摘要:

基于学习的视觉分割方法已经在特定类型的分割任务上取得了进展,但受到必要的监督、固定任务的狭隘定义以及在纠正错误的推理过程中缺乏控制的限制。为了弥补标准方法的刚性和注释负担,我们解决了小样本分割的问题:给定少量图像和少量像素监督,相应地分割任何图像。我们提出了引导网络,它从任意数量的监督中提取潜在的任务表示,并优化我们的端到端架构,以实现快速、准确的小样本分割。 我们的方法可以在没有进一步优化的情况下切换任务,并在得到更多指导时快速更新。我们报告了从每个概念一个像素分割的第一个结果,并展示了实时交互式视频分割。我们的统一方法跨空间传播像素注释以进行交互式分割,跨时间传播像素注释以进行视频分割,跨场景传播像素注释以进行语义分割。我们的引导分割器在注释量和时间的准确性方面是最先进的。有关代码、模型和更多细节,请参阅http://github.com/shelhamer/revolver。

简介:

学习特定类型的分割,甚至将现有模型扩展到新任务(如新的语义类),通常需要收集和注释大量数据,并(重新)训练模型进行多次迭代。目前的方法是由数千或数万个完全注释的图像来监督的,这样即使是一个“小”数据集也包含数十亿个像素级注释。收集这些密集的注释非常耗时、乏味且容易出错。有许多具有实际和科学意义的任务,在这种规模上的注释是不切实际的,甚至是不可行的,例如平面设计、医学成像等等。

半监督和弱监督分割方法可以跨任务中的输入传播注释(整个视频中的实例分割)或跨不同类型的注释(标签、框和掩码),但目前的方法是特定于任务或监督形式的,并且通常在计算或数据方面效率低下。一旦学会,这些方法很难指导或纠正,并且对少量的进一步注释不敏感。另一方面,交互式分割方法调整到给定的任务很少注释,并可以校正。然而,注释只控制对同一图像的推断,不能通知分割新的输入。

相反,我们解决了小样本分割的问题:只给出一些带有稀疏像素级注释的图像来指示任务,相应地分割没有注释的图像。我们统一的框架是“像素输入,像素输出”,用于从图像内部和跨图像传播任何像素注释集合到未注释的像素进行推断。我们直接优化引导网络来推断由稀疏注释定义的潜在任务,并分割以该任务为条件的新输入。 我们的小样本分段器从每个概念的一个像素中分割出新的概念,并在几乎瞬间结合进一步的注释来更新和改进推理。现有的方法是为特定的分割任务而设计的,在极其稀疏的区域失败,而我们的方法可以在光谱上从一个注释的像素传播到完整、密集的掩模。我们的小样本分割器在根据注释进行切换时是任务不可知的,在从少数像素级注释中学习数据时是高效的,并且在逐步纳入更多监督时是可纠正的。

小样本设置将输入分为一个带注释的支持(监督要完成的任务)和一个应相应地进行分段的无注释查询。在这项工作中,我们解决了小样本分割问题的这些关键部分:(1)如何将稀疏的、结构化的支持总结为任务表示,(2)如何在给定的任务表示上调整像素推理,以及(3)如何综合分割任务的准确性和一般性。结构化输出由于其高维、统计依赖和倾斜的输入和输出分布,对这些方面都提出了挑战。 我们在图像分类设置中连接小样本方法,因为我们使它们适应于分割,以便与我们的方法进行比较。

我们提出了一类新的引导网络,它扩展了小样本和全卷积架构;参见图1。给定一个标注的支持集和查询图像,引导g提取任务的潜在表示z,它通过fθ指导查询的分割。 我们对如何编码支持进行了全面的比较(第4.1节),并引入了一种用于融合图像和注释的新机制,该机制提高了学习时间和推理精度。我们研究了不同的引导推理选择(第4.2节),以确定哪个最适合结构化输出。一旦经过训练,我们的模型就不需要进一步的优化来处理新的少量任务,并且可以快速增量地合并额外的注释来改变任务或纠正错误。

我们在各种具有挑战性的分割问题上评估了我们的方法:5.1中的交互式图像分割,5.2中的语义分割,5.3中的视频对象分割和5.4中的实时交互式视频分割。图2说明了我们所考虑的问题。我们的结果的重点是在稀疏区域,对于这种情况,收集注释是实用的。在所有情况下,我们的准确性都是最先进的注释量和所需的时间。我们的方法合并新注释的速度使它适合实时交互使用。

目录
相关文章
|
2月前
|
机器学习/深度学习 编解码 计算机视觉
【APFN】从大佬论文中探索如何分析改进金字塔网络
【APFN】从大佬论文中探索如何分析改进金字塔网络
57 0
|
2月前
|
计算机视觉
【论文复现】经典再现:yolov4的主干网络重构(结合Slim-neck by GSConv)
【论文复现】经典再现:yolov4的主干网络重构(结合Slim-neck by GSConv)
52 0
【论文复现】经典再现:yolov4的主干网络重构(结合Slim-neck by GSConv)
|
1月前
|
机器学习/深度学习 开发者
论文介绍:基于扩散神经网络生成的时空少样本学习
【2月更文挑战第28天】论文介绍:基于扩散神经网络生成的时空少样本学习
16 1
论文介绍:基于扩散神经网络生成的时空少样本学习
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
299 0
【FCN】端到端式语义分割的开篇之作! 从中窥探后续语义分割网络的核心模块(一)
|
2月前
|
机器学习/深度学习 计算机视觉 Python
【SKConv】即插即用!来自CVPR 2019的选择性内核网络帮你论文涨点
【SKConv】即插即用!来自CVPR 2019的选择性内核网络帮你论文涨点
59 0
【SKConv】即插即用!来自CVPR 2019的选择性内核网络帮你论文涨点
|
2月前
|
机器学习/深度学习 编解码 数据可视化
UNet 和 UNet++:医学影像经典分割网络对比
UNet 和 UNet++:医学影像经典分割网络对比
40 0
|
3月前
|
机器学习/深度学习 网络架构 计算机视觉
CNN经典网络模型之GoogleNet论文解读
GoogleNet,也被称为Inception-v1,是由Google团队在2014年提出的一种深度卷积神经网络架构,专门用于图像分类和特征提取任务。它在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)比赛中取得了优异的成绩,引入了"Inception"模块,这是一种多尺度卷积核并行结构,可以增强网络对不同尺度特征的感知能力。
|
20天前
|
安全 Linux 虚拟化
网络名称空间在Linux虚拟化技术中的位置
网络名称空间(Network Namespaces)是Linux内核特性之一,提供了隔离网络环境的能力,使得每个网络名称空间都拥有独立的网络设备、IP地址、路由表、端口号范围以及iptables规则等。这一特性在Linux虚拟化技术中占据了核心位置🌟,它不仅为构建轻量级虚拟化解决方案(如容器📦)提供了基础支持,也在传统的虚拟机技术中发挥作用,实现资源隔离和网络虚拟化。
网络名称空间在Linux虚拟化技术中的位置
|
21天前
|
安全 Linux 网络虚拟化
Linux网络名称空间和Veth虚拟设备的关系
在讨论Linux网络名称空间和veth(虚拟以太网对)之间的关系时,我们必须从Linux网络虚拟化的核心概念开始。Linux网络名称空间和veth是Linux网络虚拟化和容器化技术的重要组成部分,它们之间的关系密不可分,对于构建隔离、高效的网络环境至关重要。😊
|
21天前
|
网络协议 安全 Linux
Linux网络名称空间之独立网络资源管理
Linux网络名称空间是一种强大的虚拟化技术🛠️,它允许用户创建隔离的网络环境🌐,每个环境拥有独立的网络资源和配置。这项技术对于云计算☁️、容器化应用📦和网络安全🔒等领域至关重要。本文将详细介绍在Linux网络名称空间中可以拥有的独立网络资源,并指出应用开发人员在使用时应注意的重点。