支持向量机(SVM)

简介: 支持向量机(Support Vector Machine,SVM)是一种用于分类问题的监督算法。主要用于二分类和多分类问题。其基本思想是找到一个超平面,能够将不同类别的样本点尽可能地分开,并使得离超平面最近的样本点尽可能远离超平面,从而实现较好的分类效果。SVM的关键是找到一个最优的超平面,这个超平面可以通过使得最靠近超平面的样本点之间的间隔最大化来定义。这些最靠近超平面的样本点被称为支持向量。SVM的优化目标可以表示为一个凸二次规划问题,可以通过求解对应的拉格朗日函数来得到最优解。SVM除了能够处理线性可分离的问题外,还可以通过核函数的引入处理线性不可分的问题,将样本映射到高维空间,从而

支持向量机(Support Vector Machine,SVM)是一种用于分类问题的监督算法。主要用于二分类和多分类问题。其基本思想是找到一个超平面,能够将不同类别的样本点尽可能地分开,并使得离超平面最近的样本点尽可能远离超平面,从而实现较好的分类效果。
SVM的关键是找到一个最优的超平面,这个超平面可以通过使得最靠近超平面的样本点之间的间隔最大化来定义。这些最靠近超平面的样本点被称为支持向量。SVM的优化目标可以表示为一个凸二次规划问题,可以通过求解对应的拉格朗日函数来得到最优解。
SVM除了能够处理线性可分离的问题外,还可以通过核函数的引入处理线性不可分的问题,将样本映射到高维空间,从而使得在高维空间中变得线性可分。SVM使用铰链损失函数计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器。同时,SVM可以通过核方法进行非线性分类,是常见的核学习方法之一。常见的核函数包括线性核、多项式核、高斯核等。
超平面与最近的类点之间的距离称为边距。最优超平面具有最大的边界,可以对点进行分类,从而使最近的数据点与这两个类之间的距离最大化。

image.png

例如,H1 没有将这两个类分开。但 H2 有,不过只有很小的边距。而 H3 以最大的边距将它们分开了。
SVM是一种常见的监督学习算法,具有很好的泛化能力和较高的分类准确率。在实际应用中,SVM广泛用于文本分类、图像识别、生物信息学等领域。

相关文章
|
机器学习/深度学习 运维 算法
Machine Learning机器学习之向量机(Support Vector Machine,SVM)
Machine Learning机器学习之向量机(Support Vector Machine,SVM)
|
消息中间件 存储 Kafka
【Kafka】Kafka 架构设计分析
【4月更文挑战第5天】【Kafka】kafka 架构设计分析
|
存储 Cloud Native Linux
QDateTime::fromString()转化失败问题
QDateTime::fromString()转化失败问题
|
安全 Java Linux
docker阿里云镜像加速
我们都知道因为某些原因我们访问外网都是比较慢的,比如我们使用maven下载依赖时是一个道理,同样的使用docker从docker.hub上下载镜像也是比较慢的。针对这种访问官网比较慢的情况有两种方案,第一种就是使用国内的仓库,第二种就是使用一个加速器。这里我们配置docker的镜像加速从来来实现提速。
13845 1
docker阿里云镜像加速
|
机器学习/深度学习 算法
【机器学习】Boosting 和 AdaBoost
【机器学习】Boosting 和 AdaBoost
|
消息中间件 存储 Java
图解Kafka:Kafka架构演化与升级!
图解Kafka:Kafka架构演化与升级!
537 0
图解Kafka:Kafka架构演化与升级!
|
机器学习/深度学习 存储 人工智能
图搜索算法详解
【5月更文挑战第11天】本文介绍了图搜索算法的基础知识,包括深度优先搜索(DFS)、广度优先搜索(BFS)和启发式搜索(如A*算法)。讨论了图搜索中的常见问题、易错点及避免方法,并提供了BFS和A*的Python代码示例。文章强调了正确标记节点、边界条件检查、测试与调试以及选择合适搜索策略的重要性。最后,提到了图搜索在路径规划、游戏AI和网络路由等领域的应用,并概述了性能优化策略。
501 3
|
消息中间件 存储 监控
扒开kafka内部组件,咱瞅一瞅都有啥?
以上是 V 哥整理的关于 Kafka 核心组件的介绍,掌握 Kafka 中间件,应用在大型分布式项目中,这对于人个的项目经验积累是浓墨重彩的笔,换句话说,只要是有用到Kafka 的项目,必然是小不了,否则架构师脑袋长泡了。
319 1