NumPy 高级教程——结构化数组

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: NumPy 高级教程——结构化数组

Python NumPy 高级教程:结构化数组

在 NumPy 中,结构化数组允许我们创建具有复杂数据类型的数组,类似于表格或数据库中的行。这对于处理异质数据集非常有用。在本篇博客中,我们将深入介绍 NumPy 中的结构化数组,并通过实例演示如何创建、访问和操作结构化数组。

1. 创建结构化数组

结构化数组可以通过指定每个字段的名称和数据类型来创建。

import numpy as np

# 定义数据类型
dtype = np.dtype([('name', 'S10'), ('age', int), ('height', float)])

# 创建结构化数组
data = np.array([('Alice', 25, 5.6), ('Bob', 30, 6.0)], dtype=dtype)
print(data)

2. 访问结构化数组的字段

可以通过字段名称访问结构化数组的各个字段。

# 访问结构化数组的字段
print(data['name'])    # 输出:['Alice' 'Bob']
print(data['age'])     # 输出:[25 30]
print(data['height'])  # 输出:[5.6 6. ]

3. 修改结构化数组的值

通过索引和字段名称,可以修改结构化数组的各个字段的值。

# 修改结构化数组的值
data['age'][0] = 26
data['height'][1] = 6.2
print(data)

4. 多维结构化数组

结构化数组可以是多维的,每个维度可以有不同的数据类型。

# 多维结构化数组
dtype_multi = np.dtype([('matrix', [('row', int), ('column', int)]), ('value', float)])
data_multi = np.array([((1, 2), 3.5), ((3, 4), 1.2)], dtype=dtype_multi)
print(data_multi)

5. 使用嵌套字段

结构化数组支持嵌套字段,可以方便地处理嵌套结构。

# 使用嵌套字段
dtype_nested = np.dtype([('info', [('name', 'S10'), ('age', int)]), ('height', float)])
data_nested = np.array([(('Alice', 25), 5.6), (('Bob', 30), 6.0)], dtype=dtype_nested)
print(data_nested)

6. 结构化数组的排序

可以使用 np.sort 函数对结构化数组进行排序。

# 结构化数组的排序
sorted_data = np.sort(data, order='age')
print(sorted_data)

7. 结构化数组的条件筛选

可以使用条件来筛选结构化数组中的数据。

# 结构化数组的条件筛选
filtered_data = data[data['age'] > 26]
print(filtered_data)

8. 结构化数组与 Pandas DataFrame 的转换

结构化数组可以方便地与 Pandas DataFrame 进行转换。

import pandas as pd

# 结构化数组转为 DataFrame
df = pd.DataFrame(data)
print(df)

9. 总结

结构化数组是 NumPy 中用于处理异质数据的重要工具,通过定义复杂的数据类型,我们可以创建具有不同字段的数组,类似于表格或数据库中的行。结构化数组提供了访问、修改、排序和条件筛选数据的灵活性,同时也方便与 Pandas DataFrame 进行交互。希望本篇博客能够帮助你更好地理解和运用 NumPy 中的结构化数组功能。

目录
相关文章
|
7天前
|
Python
numpy | 插入不定长字符数组测试OK
本文介绍了如何在numpy中创建和操作不定长字符数组,包括插入和截断操作的测试。
|
15天前
|
数据可视化 Python
NumPy 教程 之 NumPy Matplotlib 7
使用Python的绘图库Matplotlib与NumPy结合进行数据可视化,提供Matplotlib作为MatLab开源替代方案的有效方法,以及如何利用plt()函数将数据转换成直观的直方图示例。
32 11
|
15天前
|
Python
NumPy 教程 之 NumPy Matplotlib 6
Matplotlib 是一个强大的 Python 绘图库,能与 NumPy 协同工作,提供类似 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。通过 `numpy.histogram()` 函数示例,展示了如何创建数据频率分布图,该函数接受输入数组和 bin 参数,生成对应频率的直方图。示例代码及输出清晰展示了 bin 的边界与对应频率的关系。
27 11
|
16天前
|
Python
NumPy 教程 之 NumPy Matplotlib 4
使用 Python 的绘图库 Matplotlib,结合 NumPy,生成各种图形,作为 MatLab 的开源替代方案。您将学习到如何用 matplotlib 和 NumPy 包来创建正弦波图形,以及如何在同一图中利用 subplot() 函数组织和展示不同的子图,例如同时绘制正弦和余弦曲线。通过实际代码示例,加深对这些功能的理解。
30 12
|
16天前
|
Python
NumPy 教程 之 NumPy Matplotlib 3
使用Python的绘图库Matplotlib与NumPy结合,创建有效的MatLab开源替代方案。它还支持与PyQt和wxPython等图形工具包搭配使用。通过向`plot()`函数添加特定格式字符串,可以展示离散值而非线性图。提供了多种线型和标记选项,例如实线`-`、虚线`--`、点标记`.`等,以及颜色缩写如蓝色`b`、绿色`g`等。示例代码展示了如何用圆点表示数据点而非线条。
31 10
|
15天前
|
Python
NumPy 教程 之 NumPy Matplotlib 5
Matplotlib 是 Python 的绘图库,配合 NumPy 可作为 MatLab 的开源替代方案,并能与 PyQt 和 wxPython 等图形工具包共同使用。本教程重点讲解 `bar()` 函数用于生成条形图的方法,并通过实例展示了如何创建并显示两组数据的条形图。
26 7
|
20天前
|
存储 Python
NumPy 教程 之 NumPy IO 1
NumPy IO 教程介绍了如何使用 NumPy 读写文本及二进制数据。教程覆盖了 `.npy` 和 `.npz` 格式的文件操作,其中 `save()` 和 `load()` 函数用于单个数组的存取,而 `savez()` 则可以保存多个数组。文本文件处理则由 `loadtxt()` 和 `savetxt()` 完成。通过示例展示了 `numpy.save()` 函数的具体用法,并解释了其参数含义,如文件名、数组对象以及序列化选项等。
33 10
|
20天前
|
Serverless Python
NumPy 教程 之 NumPy 线性代数 7
NumPy 的 `linalg` 库提供了丰富的线性代数功能,如点积、矩阵乘法、求解线性方程等。`numpy.linalg.inv()` 用于计算矩阵的乘法逆矩阵,即找到满足 `AB=BA=E` 的矩阵 `B`,其中 `E` 是单位矩阵。示例展示了如何对矩阵 `A` 计算其逆矩阵 `A^(-1)` 并求解线性方程 `A^(-1)B`,得到向量 `[5, 3, -2]` 作为解。
35 10
|
17天前
|
Python
NumPy 教程 之 NumPy Matplotlib 2
Matplotlib 是 Python 的绘图库,能与 NumPy 结合使用,提供 MatLab 的开源替代方案,并支持 PyQt 和 wxPython 等图形工具包。由于 Matplotlib 默认不支持中文,可以使用思源黑体等字体或系统自带的中文字体(如仿宋)解决这一问题,通过指定字体路径或设置 `plt.rcParams['font.family']` 来实现中文显示。
16 1
|
17天前
|
存储 Ubuntu 数据可视化
NumPy 教程 之 NumPy Matplotlib 1
Matplotlib作为Python的绘图库,能够与NumPy结合使用,提供了类似MatLab的开源替代方案,并支持与PyQt和wxPython等图形工具包一同使用。本教程将指导你如何在不同系统环境下安装matplotlib,并通过实例演示如何利用它进行数据可视化,包括创建坐标轴标签、绘制线性图表并展示结果。
15 1

相关实验场景

更多
下一篇
无影云桌面