【Python Opencv】图片与视频的操作

简介: 【Python Opencv】图片与视频的操作

前言


在计算机视觉和图像处理中,使用OpenCV库可以进行各种强大的图片和视频操作。无论是简单的图像加载和显示,还是复杂的视频处理和分析,OpenCV提供了丰富的工具和函数。本文将介绍如何使用Python和OpenCV进行图片和视频的基本操作,包括读取、显示、保存以及视频的处理等。


一、opencv图片


目标

在这里,您将学习如何阅读图像、如何显示图像以及如何将其保存回来

您将学习以下函数:cv2.imread(), cv2.imshow() , cv2.imwrite()


1.1 读取图像

使用函数 cv.imread() 读取图像。图像应位于工作目录中,或者应提供图像的完整路径。

第一个参数是图片名称

第二个参数是一个标志,它指定了图像的读取方式。

cv.IMREAD_COLOR :加载彩色图像。图像的任何透明度都将被忽略。它是默认标志。

cv.IMREAD_GRAYSCALE:以灰度模式加载图像

cv.IMREAD_UNCHANGED : 加载图像,包括 alpha 通道

注意

除了这三个标志,您可以分别传递整数 1、0 或 -1。

import cv2
import numpy as np
img = cv2.imread("./opencv.jpg",cv2.IMREAD_UNCHANGED)


3dc3fea09ccf4f3fb242f9de0a16f22d.png

警告

即使图像路径错误,它也不会抛出任何错误,但会给您print imgNone


1.2 显示图像

使用函数 cv.imshow()在窗口中显示图像。窗口会自动适应图像大小。

第一个参数是一个窗口名称,它是一个字符串。第二个论点是我们的形象。您可以根据需要创建任意数量的窗口,但使用不同的窗口名称。

cv2.imshow("opencv",img)
cv2.waitKey(0)
cv2.destroyAllWindows()


3e87605c6021490e84529c23bd59d84d.png

cv.waitKey()是一个键盘绑定函数。它的论点是以毫秒为单位的时间。该函数等待任何键盘事件的指定毫秒。如果在这段时间内按任意键,程序将继续。如果传递 0,它将无限期地等待击键。它还可以设置为检测特定的击键,例如,如果按下了 a 键等,我们将在下面讨论。


注意

除了绑定键盘事件外,此函数还处理许多其他 GUI 事件,因此您必须使用它来实际显示图像。


destroyAllWindows就是把全部的窗口都释放内存。


cv.destroyAllWindows() 只是销毁我们创建的所有窗口。如果要销毁任何特定窗口,请使用函数 cv.destroyWindow(),在其中传递确切的窗口名称作为参数。


注意

在特殊情况下,您可以创建一个空窗口,稍后将图像加载到其中。在这种情况下,您可以指定窗口是否可调整大小。它是通过函数 cv.namedWindow() 完成的。默认情况下,该标志为 cv.WINDOW_AUTOSIZE。但是,如果指定要cv.WINDOW_NORMAL的标志,则可以调整窗口大小。当图像尺寸过大以及向窗口添加跟踪栏时,这将很有帮助。


1.3 写入图像

使用函数 cv.imwrite() 保存图像。

第一个参数是文件名,第二个参数是要保存的图像。

cv.imwrite('messigray.png',img)


6541b54cc60e4feb9c5ba109c4b4cf8f.png

这会将图像以 PNG 格式保存在工作目录中。


1.4 示例代码

示例代码的要求为读取一个图像,以灰度图的方式读取,且写入图像到文件夹下

import cv2
import numpy as np
img = cv2.imread("./opencv.jpg",cv2.IMREAD_GRAYSCALE)
cv2.imshow("opencv",img)
cv2.imwrite("./opencv-gray.jpg",img)
cv2.waitKey(0)
cv2.destroyAllWindows()


53fa28a8b9914e0f8ddabc88b859f418.png


二、Opencv视频


2.1 从相机捕获视频

通常,我们必须使用相机捕获实时流。OpenCV 为此提供了一个非常简单的接口。让我们从相机中捕获视频,将其转换为灰度视频并显示。只需一个简单的任务即可开始。

若要捕获视频,需要创建 VideoCapture 对象。其参数可以是设备索引,也可以是视频文件的名称。设备索引只是指定哪个相机的数字。通常会连接一个摄像头(就像我的情况一样)。所以我只是传递 0(或 -1)。您可以通过传递 1 来选择第二个相机,依此类推。之后,您可以逐帧捕获。但最后,不要忘记释放捕获。


获取摄像头

首先,我们先要获取摄像头对象

cap = cv.VideoCapture(0)


cab94caff8094d85b33da376ea33f5c9.png

他的参数就是你要获取的摄像头的编号

接下来我们需要判断摄像头是否打开:

if not cap.isOpened():
    print("Cannot open camera")
    exit()


4a07219a19a84f1ba4c6051189cd1f79.png

一帧一帧读取

然后我们就要去一帧一帧读取图片了

# Capture frame-by-frame
ret, frame = cap.read()


38a81ead38604c97a974158b74d3dd9f.png

使用read()函数可以读取一帧

返回值一为是否读取成功,返回值二为读取到的东西

接下来我们去判断ret是否有图片:

if not ret:
    print("Can't receive frame (stream end?). Exiting ...")
    break


437fd12fa9aa413cb72ff70cfe4f8172.png

显示图片

接下来我们直接显示即可

cv.imshow('frame', frame)


3c5ea53fddb34218b4c843aab6c17055.png

在最后,不要忘记了释放资源:

# When everything done, release the capture
cap.release()
cv.destroyAllWindows()


f50998437efe489a897c6996c98996e2.png

VideoCapture 中的get和set函数

您还可以使用 cap.get(propId) 方法访问此视频的某些功能,其中propId 是 0 到 18 之间的数字。每个数字表示视频的一个属性(如果它适用于该视频),完整的详细信息可以在这里看到:cv::VideoCapture::get()。其中一些值可以使用 cap.set(propId, value) 进行修改。Value 是所需的新值。


例如,我可以通过 和 检查框架宽度和高度。默认情况下,它给我 640x480。但我想将其修改为 320x240。只需使用和.cap.get(cv.CAP_PROP_FRAME_WIDTH)cap.get(cv.CAP_PROP_FRAME_HEIGHT)ret = cap.set(cv.CAP_PROP_FRAME_WIDTH,320)ret = cap.set(cv.CAP_PROP_FRAME_HEIGHT,240)


注意

如果出现错误,请确保使用任何其他相机应用程序(如 Linux 中的 Cheese)相机工作正常。


示例代码

import numpy as np
import cv2 as cv
cap = cv.VideoCapture(0)
if not cap.isOpened():
    print("Cannot open camera")
    exit()
while True:
    # Capture frame-by-frame
    ret, frame = cap.read()
    # if frame is read correctly ret is True
    if not ret:
        print("Can't receive frame (stream end?). Exiting ...")
        break
    cv.imshow('frame', frame )
    if cv.waitKey(1) == ord('q'):
        break
# When everything done, release the capture
cap.release()
cv.destroyAllWindows()


2211e42803854e879ce16331e3f4f439.png

2.2 从文件播放视频

它与从相机捕获相同,只需使用视频文件名更改相机索引即可。此外,在显示框架时,请为.如果太少,视频会非常快,如果太高,视频会很慢(嗯,这就是你如何以慢动作显示视频)。在正常情况下,25 毫秒是可以的。cv2.waitKey()


示例代码

import numpy as np
import cv2 as cv
cap = cv.VideoCapture('vtest.avi')
while cap.isOpened():
    ret, frame = cap.read()
    # if frame is read correctly ret is True
    if not ret:
        print("Can't receive frame (stream end?). Exiting ...")
        break
    gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    cv.imshow('frame', gray)
    if cv.waitKey(1) == ord('q'):
        break
cap.release()
cv.destroyAllWindows()


d73ac8fe49fd4492b849a686b6d4df24.png

直接在读取摄像头的这个VideoCapture对象里面写路径即可。

注意

确保安装了正确版本的 ffmpeg 或 gstreamer。有时,使用Video Capture是一件令人头疼的事情,主要是由于ffmpeg / gstreamer的错误安装。


2.3 保存视频

因此,我们捕获视频,逐帧处理,然后保存该视频。对于图像,它非常简单,只需使用 .这里需要更多的工作。cv.imwrite()


这一次,我们创建一个 VideoWriter 对象。我们应该指定输出文件名(例如:output.avi)。然后我们应该指定 FourCC 代码(详见下一段)。然后应传递每秒帧数 (fps) 和帧大小。最后一个是isColor标志。如果是,编码器需要彩色帧,否则它适用于灰度帧。True


FourCC 是用于指定视频编解码器的 4 字节代码。可用代码列表可在 fourcc.org 中找到。它依赖于平台。遵循编解码器对我来说效果很好。


在 Fedora 中:DIVX、XVID、MJPG、X264、WMV1、WMV2。(XVID 更可取。MJPG 产生高尺寸视频。X264 提供非常小尺寸的视频)

在 Windows 中:DIVX(更多待测试和添加)

在OSX中:MJPG(.mp4),DIVX(.avi),X264(.mkv)。

对于MJPG,FourCC代码以’cv.VideoWriter_fourcc(‘M’,‘J’,‘P’,‘G’)cv.VideoWriter_fourcc(*‘MJPG’)'的形式传递。or


在从相机捕获的代码下方,在垂直方向上翻转每一帧并保存。


示例代码

import numpy as np
import cv2 as cv
cap = cv.VideoCapture(0)
# Define the codec and create VideoWriter object
fourcc = cv.VideoWriter_fourcc(*'XVID')
out = cv.VideoWriter('output.avi', fourcc, 20.0, (640,  480))
while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        print("Can't receive frame (stream end?). Exiting ...")
        break
    frame = cv.flip(frame, 0)
    # write the flipped frame
    out.write(frame)
    cv.imshow('frame', frame)
    if cv.waitKey(1) == ord('q'):
        break
# Release everything if job is finished
cap.release()
out.release()
cv.destroyAllWindows()


947103facbc840668cd105102da472b6.png


总结


通过使用OpenCV,我们可以轻松进行图片和视频的各种操作。从基本的读取和显示到保存和处理视频,OpenCV提供了简单而强大的接口。图片和视频的处理是计算机视觉领域中的基础,而OpenCV为开发者提供了一个灵活而高效的工具集,使得这些任务变得更加容易实现。通过结合Python的简洁性和OpenCV的强大功能,我们可以在图像和视频处理的领域中取得令人瞩目的成果。希望这篇文章能够为你提供一个良好的入门,让你更好地理解和应用OpenCV。

相关文章
|
25天前
|
计算机视觉
Opencv学习笔记(十二):图片腐蚀和膨胀操作
这篇文章介绍了图像腐蚀和膨胀的原理、作用以及使用OpenCV实现这些操作的代码示例,并深入解析了开运算和闭运算的概念及其在图像形态学处理中的应用。
86 1
Opencv学习笔记(十二):图片腐蚀和膨胀操作
|
27天前
|
计算机视觉 Python
Opencv学习笔记(二):如何将整个文件下的彩色图片全部转换为灰度图
使用OpenCV库将一个文件夹内的所有彩色图片批量转换为灰度图,并提供了相应的Python代码示例。
31 0
Opencv学习笔记(二):如何将整个文件下的彩色图片全部转换为灰度图
|
27天前
|
计算机视觉 Python
Opencv学习笔记(一):如何将得到的图片保存在指定目录以及如何将文件夹里所有图片以数组形式输出
这篇博客介绍了如何使用OpenCV库在Python中将图片保存到指定目录,以及如何将文件夹中的所有图片读取并以数组形式输出。
117 0
Opencv学习笔记(一):如何将得到的图片保存在指定目录以及如何将文件夹里所有图片以数组形式输出
|
26天前
|
Python
Python实用记录(六):如何打开txt文档并删除指定绝对路径下图片
这篇文章介绍了如何使用Python打开txt文档,删除文档中指定路径的图片,并提供了一段示例代码来展示这一过程。
26 1
|
26天前
|
计算机视觉
Opencv学习笔记(八):如何通过cv2读取视频和摄像头来进行人脸检测(jetson nano)
如何使用OpenCV库通过cv2模块读取视频和摄像头进行人脸检测,并提供了相应的代码示例。
70 1
|
27天前
|
计算机视觉
Opencv错误笔记(一):通过cv2保存图片采用中文命名出现乱码
在使用OpenCV的cv2模块保存带有中文命名的图片时,直接使用cv2.imwrite()会导致乱码问题,可以通过改用cv2.imencode()方法来解决。
106 0
Opencv错误笔记(一):通过cv2保存图片采用中文命名出现乱码
|
27天前
|
计算机视觉 Python
Python实用记录(一):如何将不同类型视频按关键帧提取并保存图片,实现图片裁剪功能
这篇文章介绍了如何使用Python和OpenCV库从不同格式的视频文件中按关键帧提取图片,并展示了图片裁剪的方法。
54 0
|
26天前
|
Python
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
使用Python的socket库实现客户端到服务器端的图片传输,包括客户端和服务器端的代码实现,以及传输结果的展示。
106 3
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
|
19天前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。
|
25天前
|
Serverless 计算机视觉
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆
这篇文章介绍了如何使用OpenCV库通过mask图像绘制分割对象的外接椭圆。首先,需要加载mask图像,然后使用`cv2.findContours()`寻找轮廓,接着用`cv2.fitEllipse()`拟合外接椭圆,最后用`cv2.ellipse()`绘制椭圆。文章提供了详细的代码示例,展示了从读取图像到显示结果的完整过程。
41 0
语义分割笔记(三):通过opencv对mask图片来画分割对象的外接椭圆