TuGraph Analytics交互式图查询:让图所见即所得

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: TuGraph Analytics提供了OLAP图分析能力,实现图上的交互式查询,用户在构图并导入数据之后,可以通过输入GQL语句对图查询分析,并以可视化的方式直观地展示点边结果。

作者:廖梵抒

TuGraph Analytics提供了OLAP图分析能力,实现图上的交互式查询,用户在构图并导入数据之后,可以通过输入GQL语句对图查询分析,并以可视化的方式直观地展示点边结果。

OLAP架构

OLAP架构

在TuGraph Analytics OLAP架构中,主要以下组件:

  1. Client: 用户通过Client提交查询语句, Client负责和Coordinator交互,发送查询请求。
  2. Coordinator: 接收来自Client查询请求,将查询中的GQL语句进行解析、优化,构建查询的执行计划(执行计划的生成逻辑可参考《分布式图计算如何实现?带你一窥图计算执行计划》),并将任务调度给Woker执行。
  3. Worker:具体分布式地执行任务的单元,接收到Coordinator发送的Pipeline,执行具体的计算和查询逻辑。
  4. Meta Service: 服务注册管理,Coordinator启动后,会将服务的地址和端口向MetaService进行注册,Client提交查询时从MetaService获取Coordinator的服务地址,进行连接。目前支持http和rpc两种方式。

组件间执行流程如下:
OLAP流程

操作指南

1. 定义图模型

以下图为例,图中有2种点person和software,以及2种边knows和creates。

图模型

图模型定义可参考《TuGraph Analytics图建模研发:为图计算业务提速增效》,图定义语法为:

CREATE GRAPH dy_modern (
    Vertex person (
      id bigint ID,
      name varchar,
      age int
    ),
    Vertex software (
      id bigint ID,
      name varchar,
      lang varchar
    ),
    Edge knows (
      srcId bigint SOURCE ID,
      targetId bigint DESTINATION ID,
      weight int
    ),
    Edge creates (
      srcId bigint SOURCE ID,
      targetId bigint DESTINATION ID,
      weight int
    )
) WITH (
    storeType='rocksdb',
    shardCount = 2
);

2. 准备图数据

创建“加工”类型图任务,发布生成图作业。

USE GRAPH dy_modern;

INSERT INTO dy_modern.person(id, name, age)
SELECT 1, 'jim', 20
UNION ALL
SELECT 2, 'kate', 22
UNION ALL
SELECT 3, 'tom', 24;

INSERT INTO dy_modern.software(id, name, lang)
SELECT 4, 'software1', 'java'
UNION ALL
SELECT 5, 'software2', 'java';

INSERT INTO dy_modern.knows
SELECT 1,2,2
UNION ALL
SELECT 1,3,3
UNION ALL
SELECT 3,2,3;

INSERT INTO dy_modern.creates
SELECT 2,4,6
UNION ALL
SELECT 3,5,8
UNION ALL
SELECT 3,4,8;

图作业需要的worker数为23,在作业界面将参数进行修改,之后提交作业运行。

Worker数配置

3. 创建查询服务

创建图查询服务, 任务类型选择“图查询”,目标图选择刚才创建的图。

创建查询服务

发布任务后,使用默认参数即可,提交作业。

4. 执行查询

图查询服务的作业变成RUNNING状态后,可在任务界面点击“查询”进入图查询界面

进入图查询

输入相应的gql查询语句,点击“执行”,即可得到查询结果。

执行图查询

5. 图可视化

点击某个点,可以查看点关联的具体信息和属性,以及关联的其他点边。

点边视图

除了可视化的方式,也可以json形式看到返回的结果。

JSON视图

至此,我们就成功使用TuGraph Analytics实现了图上的交互式查询!是不是超简单!快来试一试吧!

欢迎关注我们的GitHub仓库: 👉 https://github.com/TuGraph-family/tugraph-analytics

相关文章
|
Web App开发 数据可视化 前端开发
前端数据可视化插件(四)关系图
前端数据可视化插件(四)关系图
前端数据可视化插件(四)关系图
|
7月前
|
SQL 消息中间件 算法
TuGraph Analytics图数据集成:表到图的最后一公里
小伙伴们想玩一玩图计算,数据的导入工作总是绕不开的一个环节。为了降低大家数据导入操作的成本,提升图计算的整体使用体验,TuGraph Analytics推出了“图数据集成”能力,帮助大家通过简单配置完成数据导入工作。
TuGraph Analytics图数据集成:表到图的最后一公里
|
7月前
|
监控 前端开发 Java
TuGraph Analytics作业监控面板:运行时组件上的高效分析工具
我们在作业进程中内置了一个Dashboard(本地启动/容器启动时自动生效),包括前端页面和后端server,用户可以不需要感知到它们的存在。通过访问Dashboard,用户可以更方便地通过白屏化的方式查看作业的执行进度、组件列表和详情、任意组件内部的指标、日志等。还可以通过Profiler工具对进程状态进行分析,快速定位问题。
|
SQL 算法 图计算
Tugraph Analytics图计算快速上手之紧密中心度算法
紧密中心度(Closeness Centrality)计量了一个节点到其他所有节点的紧密性,即该节点到其他节点的距离的倒数;节点对应的值越高表示紧密性越好,能够在图中传播信息的能力越强,可用以衡量信息流入或流出该节点的能力,多用与社交网络中关键节点发掘等场景。
|
存储 SQL 监控
TuGraph Analytics 流图计算之行为路径归因
目前 TuGraph Analystics 已经在多类应用场景以及万亿级别的数据规模下提供了生产可用的计算服务,本文主要介绍在路径归因的场景下的实践。
|
算法 图计算
TuGraph Analytics图计算快速上手之K-core算法
K-Core算法是一种用来在图中找出符合指定核心度的紧密关联的子图结构,在K-Core的结果子图中,每个顶点至少具有k的度数,且所有顶点都至少与该子图中的 k 个其他节点相连。K-Core通常用来对一个图进行子图划分,通过去除不重要的顶点,将符合逾期的子图暴露出来进行进一步分析。K-Core图算法常用来识别和提取图中的紧密连通群组,因具有较低的时间复杂度(线性)及较好的直观可解释性,广泛应用于金融风控、社交网络和生物学等研究领域。
|
数据采集 自然语言处理 数据可视化
数据分析实例-获取某宝评论数据做词云图可视化
数据分析实例-获取某宝评论数据做词云图可视化
420 0
数据分析实例-获取某宝评论数据做词云图可视化
|
移动开发 数据可视化 JavaScript
从零设计可视化大屏搭建引擎
几个月前我写了一篇关于从零开发一款可视化大屏制作平台 的文章, 简单概述了一下可视化大屏搭建平台的一些设计思路和效果演示, 这篇文章我会就 如何设计可视化大屏搭建引擎 这一主题, 详细介绍一下实现原理。
418 0
|
数据可视化
GraphScope 图分析引擎 - GRAPE 介绍
GraphScope 中的图分析引擎继承自 GRAPE,该系统实现了论文 Parallelizing Sequential Graph Computations 中提出的不动点计算模型
下一篇
DataWorks