「SQL面试题库」 No_75 重新格式化部门表

简介: 「SQL面试题库」 No_75 重新格式化部门表

🍅 1、专栏介绍

「SQL面试题库」是由 不是西红柿 发起,全员免费参与的SQL学习活动。我每天发布1道SQL面试真题,从简单到困难,涵盖所有SQL知识点,我敢保证只要做完这100道题,不仅能轻松搞定面试,代码能力和工作效率也会有明显提升。

1.1 活动流程

  1. 整理题目:西红柿每天无论刮风下雨,保证在8am 前,更新一道新鲜SQL面试真题。
  2. 粉丝打卡:粉丝们可在评论区写上解题思路,或者直接完成SQL代码,有困难的小伙伴不要着急,先看别人是怎么解题的,边看边学,不懂就问我。
  3. 交流讨论:为了方便交流讨论,可进入 数据仓库
  4. 活动奖励:我每天都会看评论区和群里的内容,对于积极学习和热心解答问题的小伙伴,红包鼓励,以营造更好的学习氛围。

1.2 你的收获

  1. 增强自信,搞定面试:在求职中,SQL是经常遇到的技能点,而这些题目也多数是真实的面试题,刷题可以让我们更好地备战面试,增强自信,提升自己的核心竞争力。
  2. 巩固SQL语法,高效搞定工作:通过不断练习,能够熟悉SQL的语法和常用函数,掌握SQL核心知识点,提高SQL编写能力。代码能力提升了,工作效率自然高了。
  3. 提高数据处理能力、锻炼思维能力:SQL是数据处理的核心工具,通过刷题可以让我们更好地理解数据处理的过程,提高数据分析的效率。SQL题目的难度不一,需要在一定时间内解决问题,培养了我们对问题的思考能力、解决问题的能力和对时间的把控能力等。

🍅 2、今日真题

题目介绍: 重新格式化部门表 reformat-department-table

难度

SQL架构

部门表

Department

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| id            | int     |
| revenue       | int     |
| month         | varchar |
+---------------+---------+
(id, month) 是表的联合主键。
这个表格有关于每个部门每月收入的信息。
月份(month)可以取下列值 ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]。

编写一个 SQL 查询来重新格式化表,使得新的表中有一个部门 id 列和一些对应 每个月 的收入(revenue)列。

查询结果格式如下面的示例所示:

``` Department 表: +------+---------+-------+ | id | revenue | month | +------+---------+-------+ | 1 | 8000 | Jan | | 2 | 9000 | Jan | | 3 | 10000 | Feb | | 1 | 7000 | Feb | | 1 | 6000 | Mar | +------+---------+-------+

查询得到的结果表: +------+-------------+-------------+-------------+-----+-------------+ | id | Jan_Revenue | Feb_Revenue | Mar_Revenue | ... | Dec_Revenue | +------+-------------+-------------+-------------+-----+-------------+ | 1 | 8000 | 7000 | 6000 | ... | null | | 2 | 9000 | null | null | ... | null | | 3 | null | 10000 | null | ... | null | +------+-------------+-------------+-------------+-----+-------------+

注意,结果表有 13 列 (1个部门 id 列 + 12个月份的收入列)。 ```

sql
SELECT id,
SUM(CASE `month` WHEN 'Jan' THEN revenue END) Jan_Revenue,
SUM(CASE `month` WHEN 'Feb' THEN revenue END) Feb_Revenue,
SUM(CASE `month` WHEN 'Mar' THEN revenue END) Mar_Revenue,
SUM(CASE `month` WHEN 'Apr' THEN revenue END) Apr_Revenue,
SUM(CASE `month` WHEN 'May' THEN revenue END) May_Revenue,
SUM(CASE `month` WHEN 'Jun' THEN revenue END) Jun_Revenue,
SUM(CASE `month` WHEN 'Jul' THEN revenue END) Jul_Revenue,
SUM(CASE `month` WHEN 'Aug' THEN revenue END) Aug_Revenue,
SUM(CASE `month` WHEN 'Sep' THEN revenue END) Sep_Revenue,
SUM(CASE `month` WHEN 'Oct' THEN revenue END) Oct_Revenue,
SUM(CASE `month` WHEN 'Nov' THEN revenue END) Nov_Revenue,
SUM(CASE `month` WHEN 'Dec' THEN revenue END) Dec_Revenue
FROM Department
GROUP BY id;

```sql 1193. 每月交易 I SQL架构 Table: Transactions

+---------------+---------+ | Column Name | Type | +---------------+---------+ | id | int | | country | varchar | | state | enum | | amount | int | | trans_date | date | +---------------+---------+ id 是这个表的主键。 该表包含有关传入事务的信息。 state 列类型为 “[”批准“,”拒绝“] 之一。

编写一个 sql 查询来查找每个月和每个国家/地区的事务数及其总金额、已批准的事务数及其总金额。

查询结果格式如下所示:

Transactions table: +------+---------+----------+--------+------------+ | id | country | state | amount | trans_date | +------+---------+----------+--------+------------+ | 121 | US | approved | 1000 | 2018-12-18 | | 122 | US | declined | 2000 | 2018-12-19 | | 123 | US | approved | 2000 | 2019-01-01 | | 124 | DE | approved | 2000 | 2019-01-07 | +------+---------+----------+--------+------------+

Result table: +----------+---------+-------------+----------------+--------------------+-----------------------+ | month | country | trans_count | approved_count | trans_total_amount | approved_total_amount | +----------+---------+-------------+----------------+--------------------+-----------------------+ | 2018-12 | US | 2 | 1 | 3000 | 1000 | | 2019-01 | US | 1 | 1 | 2000 | 2000 | | 2019-01 | DE | 1 | 1 | 2000 | 2000 | +----------+---------+-------------+----------------+--------------------+-----------------------+ ```

sql
SELECT DATE_FORMAT(trans_date, '%Y-%m') AS month,
    country,
    COUNT(*) AS trans_count,
    COUNT(IF(state = 'approved', 1, NULL)) AS approved_count,
    SUM(amount) AS trans_total_amount,
    SUM(IF(state = 'approved', amount, 0)) AS approved_total_amount
FROM Transactions
GROUP BY month, country
  • 已经有灵感了?在评论区写下你的思路吧!
相关文章
|
3月前
|
SQL 数据库
SQL面试50题------(初始化工作、建立表格)
这篇文章提供了SQL面试中可能会遇到的50道题目的建表和初始化数据的SQL脚本,包括学生、教师、课程和成绩表的创建及数据插入示例。
SQL面试50题------(初始化工作、建立表格)
|
3月前
|
SQL
sql面试50题------(1-10)
这篇文章提供了SQL面试中的前10个问题及其解决方案,包括查询特定条件下的学生信息、教师信息和课程成绩等。
sql面试50题------(1-10)
|
3月前
|
SQL
sql面试50题------(11-20)
这篇文章提供了SQL面试中的50道题目,其中详细解释了11至20题,包括查询与学号为“01”的学生所学课程相同的学生信息、不及格课程的学生信息、各科成绩统计以及学生的总成绩排名等问题的SQL查询语句。
|
3月前
|
SQL
sql面试50题------(21-30)
这篇文章是SQL面试题的21至30题,涵盖了查询不同老师所教课程的平均分、按分数段统计各科成绩人数、查询学生平均成绩及其名次等问题的SQL查询语句。
sql面试50题------(21-30)
|
4月前
|
SQL 监控 关系型数据库
PolarDB产品使用问题之SQL防火墙怎么拦截没有指定WHERE条件的特定表的SQL语
PolarDB产品使用合集涵盖了从创建与管理、数据管理、性能优化与诊断、安全与合规到生态与集成、运维与支持等全方位的功能和服务,旨在帮助企业轻松构建高可用、高性能且易于管理的数据库环境,满足不同业务场景的需求。用户可以通过阿里云控制台、API、SDK等方式便捷地使用这些功能,实现数据库的高效运维与持续优化。
|
4月前
|
SQL 分布式计算 DataWorks
MaxCompute操作报错合集之使用sql查询一个表的分区数据时遇到报错,该如何解决
MaxCompute是阿里云提供的大规模离线数据处理服务,用于大数据分析、挖掘和报表生成等场景。在使用MaxCompute进行数据处理时,可能会遇到各种操作报错。以下是一些常见的MaxCompute操作报错及其可能的原因与解决措施的合集。
|
4月前
|
SQL 存储 数据库
MySQL设计规约问题之如何处理日志类型的表
MySQL设计规约问题之如何处理日志类型的表
|
3月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
2天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
3天前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
21 4
下一篇
无影云桌面