「SQL面试题库」 No_70 市场分析 I

简介: 「SQL面试题库」 No_70 市场分析 I

🍅 1、专栏介绍

「SQL面试题库」是由 不是西红柿 发起,全员免费参与的SQL学习活动。我每天发布1道SQL面试真题,从简单到困难,涵盖所有SQL知识点,我敢保证只要做完这100道题,不仅能轻松搞定面试,代码能力和工作效率也会有明显提升。

1.1 活动流程

  1. 整理题目:西红柿每天无论刮风下雨,保证在8am 前,更新一道新鲜SQL面试真题。
  2. 粉丝打卡:粉丝们可在评论区写上解题思路,或者直接完成SQL代码,有困难的小伙伴不要着急,先看别人是怎么解题的,边看边学,不懂就问我。
  3. 交流讨论:为了方便交流讨论,可进入 数据仓库
  4. 活动奖励:我每天都会看评论区和群里的内容,对于积极学习和热心解答问题的小伙伴,红包鼓励,以营造更好的学习氛围。

1.2 你的收获

  1. 增强自信,搞定面试:在求职中,SQL是经常遇到的技能点,而这些题目也多数是真实的面试题,刷题可以让我们更好地备战面试,增强自信,提升自己的核心竞争力。
  2. 巩固SQL语法,高效搞定工作:通过不断练习,能够熟悉SQL的语法和常用函数,掌握SQL核心知识点,提高SQL编写能力。代码能力提升了,工作效率自然高了。
  3. 提高数据处理能力、锻炼思维能力:SQL是数据处理的核心工具,通过刷题可以让我们更好地理解数据处理的过程,提高数据分析的效率。SQL题目的难度不一,需要在一定时间内解决问题,培养了我们对问题的思考能力、解决问题的能力和对时间的把控能力等。

🍅 2、今日真题

题目介绍: 市场分析 I market-analysis-i

难度中等

SQL架构

Table:

Users
+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| user_id        | int     |
| join_date      | date    |
| favorite_brand | varchar |
+----------------+---------+
此表主键是 user_id,表中描述了购物网站的用户信息,用户可以在此网站上进行商品买卖。

Table:

Orders
+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| order_id      | int     |
| order_date    | date    |
| item_id       | int     |
| buyer_id      | int     |
| seller_id     | int     |
+---------------+---------+
此表主键是 order_id,外键是 item_id 和(buyer_id,seller_id)。

Table:

Item
+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| item_id       | int     |
| item_brand    | varchar |
+---------------+---------+
此表主键是 item_id。

请写出一条SQL语句以查询每个用户的注册日期和在 2019 年作为买家的订单总数。

查询结果格式如下:

``` Users table: +---------+------------+----------------+ | user_id | join_date | favorite_brand | +---------+------------+----------------+ | 1 | 2018-01-01 | Lenovo | | 2 | 2018-02-09 | Samsung | | 3 | 2018-01-19 | LG | | 4 | 2018-05-21 | HP | +---------+------------+----------------+

Orders table: +----------+------------+---------+----------+-----------+ | order_id | order_date | item_id | buyer_id | seller_id | +----------+------------+---------+----------+-----------+ | 1 | 2019-08-01 | 4 | 1 | 2 | | 2 | 2018-08-02 | 2 | 1 | 3 | | 3 | 2019-08-03 | 3 | 2 | 3 | | 4 | 2018-08-04 | 1 | 4 | 2 | | 5 | 2018-08-04 | 1 | 3 | 4 | | 6 | 2019-08-05 | 2 | 2 | 4 | +----------+------------+---------+----------+-----------+

Items table: +---------+------------+ | item_id | item_brand | +---------+------------+ | 1 | Samsung | | 2 | Lenovo | | 3 | LG | | 4 | HP | +---------+------------+

Result table: +-----------+------------+----------------+ | buyer_id | join_date | orders_in_2019 | +-----------+------------+----------------+ | 1 | 2018-01-01 | 1 | | 2 | 2018-02-09 | 2 | | 3 | 2018-01-19 | 0 | | 4 | 2018-05-21 | 0 | +-----------+------------+----------------+ ```

sql
select user_id buyer_id,join_date, ifnull(cnt,0)orders_in_2019
from Users u left join 
(select buyer_id,count(*) cnt
from Orders
where year(order_date) = 2019
group by  buyer_id
)t1
on u.user_id =t1.buyer_id
  • 已经有灵感了?在评论区写下你的思路吧!
相关文章
|
9天前
|
Java 数据库连接 Maven
最新版 | 深入剖析SpringBoot3源码——分析自动装配原理(面试常考)
自动装配是现在面试中常考的一道面试题。本文基于最新的 SpringBoot 3.3.3 版本的源码来分析自动装配的原理,并在文未说明了SpringBoot2和SpringBoot3的自动装配源码中区别,以及面试回答的拿分核心话术。
最新版 | 深入剖析SpringBoot3源码——分析自动装配原理(面试常考)
|
2月前
|
SQL 缓存 监控
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
本文详细解析了数据库、缓存、异步处理和Web性能优化四大策略,系统性能优化必知必备,大厂面试高频。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:4 大性能优化策略(数据库、SQL、JVM等)
|
3月前
|
SQL 存储 数据可视化
手机短信SQL分析技巧与方法
在手机短信应用中,SQL分析扮演着至关重要的角色
|
5月前
|
SQL
sql面试50题------(21-30)
这篇文章是SQL面试题的21至30题,涵盖了查询不同老师所教课程的平均分、按分数段统计各科成绩人数、查询学生平均成绩及其名次等问题的SQL查询语句。
sql面试50题------(21-30)
|
5月前
|
前端开发 Java JSON
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
67 0
|
5月前
|
SQL 数据采集 数据挖掘
为什么要使用 SQL 函数?详尽分析
【8月更文挑战第31天】
65 0
|
5月前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
265 0
|
5月前
|
SQL 数据挖掘 BI
【超实用技巧】解锁SQL聚合函数的奥秘:从基础COUNT到高级多表分析,带你轻松玩转数据统计与挖掘的全过程!
【8月更文挑战第31天】SQL聚合函数是进行数据统计分析的强大工具,可轻松计算平均值、求和及查找极值等。本文通过具体示例,展示如何利用这些函数对`sales`表进行统计分析,包括使用`COUNT()`、`SUM()`、`AVG()`、`MIN()`、`MAX()`等函数,并结合`GROUP BY`和`HAVING`子句实现更复杂的数据挖掘需求。通过这些实践,你将学会如何高效地应用SQL聚合函数解决实际问题。
68 0
|
5月前
|
网络协议 NoSQL 网络安全
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
|
2月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!