🍅 1、专栏介绍
「SQL面试题库」是由 不是西红柿 发起,全员免费参与的SQL学习活动。我每天发布1道SQL面试真题,从简单到困难,涵盖所有SQL知识点,我敢保证只要做完这100道题,不仅能轻松搞定面试,代码能力和工作效率也会有明显提升。
1.1 活动流程
- 整理题目:西红柿每天无论刮风下雨,保证在8am 前,更新一道新鲜SQL面试真题。
- 粉丝打卡:粉丝们可在评论区写上解题思路,或者直接完成SQL代码,有困难的小伙伴不要着急,先看别人是怎么解题的,边看边学,不懂就问我。
- 交流讨论:为了方便交流讨论,可进入 数据仓库 。
- 活动奖励:我每天都会看评论区和群里的内容,对于积极学习和热心解答问题的小伙伴,红包鼓励,以营造更好的学习氛围。
1.2 你的收获
- 增强自信,搞定面试:在求职中,SQL是经常遇到的技能点,而这些题目也多数是真实的面试题,刷题可以让我们更好地备战面试,增强自信,提升自己的核心竞争力。
- 巩固SQL语法,高效搞定工作:通过不断练习,能够熟悉SQL的语法和常用函数,掌握SQL核心知识点,提高SQL编写能力。代码能力提升了,工作效率自然高了。
- 提高数据处理能力、锻炼思维能力:SQL是数据处理的核心工具,通过刷题可以让我们更好地理解数据处理的过程,提高数据分析的效率。SQL题目的难度不一,需要在一定时间内解决问题,培养了我们对问题的思考能力、解决问题的能力和对时间的把控能力等。
🍅 2、今日真题
题目介绍: 过去30天的用户活动 II user-activity-for-the-past-30-days-ii
难度简单7收藏分享切换为英文关注反馈
SQL架构
Table:
Activity
+---------------+---------+ | Column Name | Type | +---------------+---------+ | user_id | int | | session_id | int | | activity_date | date | | activity_type | enum | +---------------+---------+ 该表没有主键,它可能有重复的行。 activity_type列是一种类型的ENUM(“ open_session”,“ end_session”,“ scroll_down”,“ send_message”)。 该表显示了社交媒体网站的用户活动。 请注意,每个会话完全属于一个用户。
编写SQL查询以查找截至2019年7月27日(含)的30天内每个用户的平均会话数,四舍五入到小数点后两位。我们只统计那些会话期间用户至少进行一项活动的有效会话。
查询结果格式如下例所示:
``` Activity table: +---------+------------+---------------+---------------+ | user_id | session_id | activity_date | activity_type | +---------+------------+---------------+---------------+ | 1 | 1 | 2019-07-20 | open_session | | 1 | 1 | 2019-07-20 | scroll_down | | 1 | 1 | 2019-07-20 | end_session | | 2 | 4 | 2019-07-20 | open_session | | 2 | 4 | 2019-07-21 | send_message | | 2 | 4 | 2019-07-21 | end_session | | 3 | 2 | 2019-07-21 | open_session | | 3 | 2 | 2019-07-21 | send_message | | 3 | 2 | 2019-07-21 | end_session | | 3 | 5 | 2019-07-21 | open_session | | 3 | 5 | 2019-07-21 | scroll_down | | 3 | 5 | 2019-07-21 | end_session | | 4 | 3 | 2019-06-25 | open_session | | 4 | 3 | 2019-06-25 | end_session | +---------+------------+---------------+---------------+
Result table: +---------------------------+ | average_sessions_per_user | +---------------------------+ | 1.33 | +---------------------------+ User 1 和 2 在过去30天内各自进行了1次会话,而用户3进行了2次会话,因此平均值为(1 +1 + 2)/ 3 = 1.33。 ```
sql SELECT IFNULL(ROUND(COUNT(DISTINCT session_id) / COUNT(DISTINCT user_id), 2), 0) AS average_sessions_per_user from Activity where activity_date > date_add('2019-07-27',INTERVAL -1 MONTH)
1个session id 代表一次会话
- 已经有灵感了?在评论区写下你的思路吧!