Python小姿势 - import random

简介: Python小姿势 - import random

import random

topic = random.choice(['python decorator', 'python generator', 'python yield', 'python list comprehension'])

print('How to use {} in Python?'.format(topic))

If you're a Python programmer, then you've probably already used functions like len(), print(), or range(). But did you know that these are actually just "wrapper" functions that make use of other more powerful functions?

In Python, these wrapper functions are called decorators. Decorators allow you to "wrap" a function in another function, and modify the behavior of the wrapped function without actually changing the code of the function itself.

In this article, we'll take a look at how to use decorators in Python, and see some examples of how they can be used to make your code more concise and easier to read.

So what exactly is a decorator?

A decorator is a function that takes another function as an argument, and returns a new function that "wraps" the original function.

For example, let's say we have a function that prints a message to the console:

def print_message(message): print(message)

Now, let's say we want to add some extra behavior to this function, like logging the message to a file. We could do this by defining a new function that calls the print_message() function and also logs the message to a file:

def log_message(message): print_message(message) with open('log.txt', 'a') as f: f.write(message + '\n')

But this approach has a couple of problems. First, it requires us to duplicate the code of the print_message() function in the log_message() function. Second, it means that if we ever want to change the behavior of the print_message() function, we have to change the code in two places (in the print_message() function and in the log_message() function).

Fortunately, there's a better way to do this using decorators. We can define a decorator function that takes the print_message() function as an argument and returns a new function that "wraps" the print_message() function:

def log_decorator(func): def wrapper(message): print_message(message) with open('log.txt', 'a') as f: f.write(message + '\n') return wrapper

Now we can use this decorator to "wrap" the print_message() function:

@log_decorator def print_message(message): print(message)

When we use the @log_decorator decorator, it's equivalent to calling the log_decorator() function with the print_message() function as an argument, and then assigning the return value (the new "wrapped" function) to the print_message() function.

So what happens when we call the print_message() function now?

print_message('Hello, world!')

Hello, world!

The output of the above code is the same as if we had called the log_message() function:

Hello, world!

How do decorators work?

The key to understanding how decorators work is to understand that functions are first-class objects in Python. This means that they can be passed as arguments to other functions, and they can be returned by other functions.

When we use the @log_decorator decorator, what actually happens is that the print_message() function is passed as an argument to the log_decorator() function, and the return value (the new "wrapped" function) is assigned to the print_message() function.

Let's take a look at a slightly simplified version of the log_decorator() function to see how this works:

def log_decorator(func): def wrapper(message): print_message(message) with open('log.txt', 'a') as f: f.write(message + '\n') return wrapper

First, we define a function that takes a function as an argument. Then, we define a wrapper function that calls the func() function (which is the print_message() function in our case) and also logs the message to a file. Finally, we return the wrapper function.

When we use the @log_decorator decorator, the print_message() function is passed as an argument to the log_decorator() function, and the return value (the wrapper function) is assigned to the print_message() function.


相关文章
|
8月前
|
资源调度 算法 JavaScript
Python基础专题 - 超级详细的 Random(随机)原理解析与编程实践
Python基础专题 - 超级详细的 Random(随机)原理解析与编程实践
667 0
|
8月前
|
数据可视化 数据挖掘 开发者
import有什么用,python中怎么使用import
import有什么用,python中怎么使用import
108 1
|
6月前
|
数据采集 机器学习/深度学习 Python
【Python】已完美解决:ImportError: cannot import name ‘Imputer‘ from ‘sklearn.preprocessing
【Python】已完美解决:ImportError: cannot import name ‘Imputer‘ from ‘sklearn.preprocessing
419 3
|
5月前
|
算法 TensorFlow 算法框架/工具
写Python时不用import,你会遭遇什么
写Python时不用import,你会遭遇什么
|
5月前
|
机器学习/深度学习 数据采集 安全
Python中的random模块及相关模块详解
随机函数是计算机科学中一个基础而又重要的概念,random模块为我们提供了丰富的功能来处理随机性。 通过深入学习和应用random模块以及numpy、secrets和matplotlib等相关模块,我们可以更好地处理各种随机性相关的问题。 无论是简单的随机数生成,还是复杂的随机分布和安全随机数,Python都为我们提供了强大的工具和库,使我们能够在各种应用场景中灵活应对随机性需求。
|
6月前
|
机器学习/深度学习 数据采集 安全
Python中的random模块及相关模块详解
随机函数是计算机科学中一个基础而又重要的概念,random模块为我们提供了丰富的功能来处理随机性。 通过深入学习和应用random模块以及numpy、secrets和matplotlib等相关模块,我们可以更好地处理各种随机性相关的问题。 无论是简单的随机数生成,还是复杂的随机分布和安全随机数,Python都为我们提供了强大的工具和库,使我们能够在各种应用场景中灵活应对随机性需求。
|
7月前
|
XML 数据格式 Python
Python的`import`用于加载模块,基础形式是`import module`,全量导入
【6月更文挑战第23天】Python的`import`用于加载模块,基础形式是`import module`,全量导入;`from module import name`选择性导入部分,减少命名空间污染;`from module import *`导入所有(不推荐),易引发冲突。别名导入如`from math import sqrt as square_root`可避免冲突。包导入用`.`,如`import xml.etree.ElementTree as ET`。
74 8
|
7月前
|
XML 数据格式 Python
在Python中,导入其他模块是通过使用import语句完成的
在Python中导入模块涉及`import`语句的不同用法:1) `import math`导入整个标准库;2) `from math import sqrt`导入单个函数;3) `import numpy as np`使用别名;4) `from random import *`导入所有(不推荐);5) `import xml.etree.ElementTree as ET`导入子模块;6) 使用`importlib.import_module()`延迟导入;7) `from .module import func`导入相对路径模块,需管理`sys.path`。
103 6
|
7月前
|
XML 数据格式 Python
Python模块导入包括:`import math`导入标准库
【6月更文挑战第23天】Python模块导入包括:`import math`导入标准库,`from math import sqrt`导入单个函数,`import numpy as np`给模块取别名,`from random import *`导入所有(不推荐),`import xml.etree.ElementTree as ET`导入子模块,`import_module('pandas')`按需导入,和使用相对路径如`from .module import func`处理项目结构。记得调整`sys.path`以包含自定义模块路径。
114 4
|
6月前
|
Python
【Python】已解决:(from docx import Document导包报错)ModuleNotFoundError: No module named ‘exceptions’
【Python】已解决:(from docx import Document导包报错)ModuleNotFoundError: No module named ‘exceptions’
391 0