jvm性能调优 - 11J线上VM调优案例分享

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: jvm性能调优 - 11J线上VM调优案例分享

Pre

上一篇文章我们给大家分析了一下到底什么时候会触发Minor GC,什么时候会让对象从新生代转移到老年代,包括为了新生代转移到老年代的内存足够安全,Minor GC之前要如何检查老年代的内存空间,在什么情况下会触发老年代的Full GC,老年代的垃圾回收算法是什么,这些问题都已经给大家分析清楚了。

这篇文章,我们先接着上篇文章,给大家来一个真实的我们之前一个生产系统的老年代频繁Full GC的案例,让大家更加透彻的理解整个对象分配以及转移到老年代,以及Minor GC和Full GC的全过程。


案例分析

业务背景

一个日处理上亿数据的计算系统

先给大家说一下这个系统的案例背景,大概来说是自己研发的一个数据计算系统,日处理数据量在上亿的规模。

为了方便大家集中注意力理解这个系统的生产环境的JVM相关的东西,所以对系统本身就简化说明了。

简单来说,这个系统就是会不停的从MySQL数据库以及其他数据源里提取大量的数据,加载到自己的JVM内存里来进行计算处理,如下图所示。

这个数据计算系统会不停的通过SQL语句和其他方式从各种数据存储中提取数据到内存中来进行计算,大致当时的生产负载是每分钟大概需要执行500次数据提取和计算的任务。

但是这是一套分布式运行的系统,所以生产环境部署了多台机器,每台机器大概每分钟负责执行100次数据提取和计算的任务。

每次会提取大概1万条左右的数据到内存里来计算,平均每次计算大概需要耗费10秒左右的时间

然后每台机器是4核8G的配置,JVM内存给了4G,其中新生代和老年代分别是1.5G的内存空间,大家看下图。


这个系统到底多快会塞满新生代?

现在明确了一些核心数据,接着我们来看看这个系统到底多快会塞满新生代的内存空间?

既然这个系统每台机器上部署的实例,每分钟会执行100次数据计算任务,每次是1万条数据需要计算10秒的时间,那么我们来看看每次1万条数据大概会占用多大的内存空间?

这里每条数据都是比较大的,大概每条数据包含了平均20个字段,可以认为平均每条数据在1KB左右的大小。那么每次计算任务的1万条数据就对应了10MB的大小。

所以大家此时可以思考一下,如果新生代是按照8:1:1的比例来分配Eden和两块Survivor的区域,那么大体上来说,Eden区就是1.2GB,每块Survivor区域在100MB左右,如下图。

基本上按照这个内存大小而言,大家会发现,每次执行一个计算任务,就会在Eden区里分配10MB左右的对象,那么一分钟大概对应100次计算任务

其实基本上一分钟过后,Eden区里就全是对象,基本就全满了。

所以说, 新生代里的Eden区,基本上1分钟左右就迅速填满了。


触发Minor GC的时候会有多少对象进入老年代?

此时假设新生代的Eden区在1分钟过后都塞满对象了,然后在接着继续执行计算任务的时候,势必会导致需要进行Minor GC回收一部分的垃圾对象。

那么上篇文章给大家讲过这里在执行Minor GC之前会先进行的检查。

  • 首先第一步,先看看老年代的可用内存空间是否大于新生代全部对象?

看下图,此时老年代是空的,大概有1.5G的可用内存空间,新生代的Eden区大概算他有1.2G的对象好了。

此时会发现老年代的可用内存空间有1.5GB,新生代的对象总共有1.2GB,即使一次Minor GC过后,全部对象都存活,老年代也能放的下的,那么此时就会直接执行Minor GC了。

那么此时Eden区里有多少对象还是存活的,无法被垃圾回收呢?

大家可以考虑一下之前说的那个点,每个计算任务1万条数据需要计算10秒钟,假设此时80个计算任务都执行结束了,但是还有20个计算任务共计200MB的数据还在计算中,此时就是200MB的对象是存活的,不能被垃圾回收掉,然后有1GB的对象是可以垃圾回收的

大家看下图。

此时一次Minor GC就会回收掉1GB的对象,然后200MB的对象能放入Survivor区吗?

不能!因为任何一块Survivor区实际上就100MB的空间,此时就会通过空间担保机制,让这200MB对象直接进入老年代去,占用里面200MB内存空间,然后Eden区就清空了

大家看下图。


系统运行多久,老年代大概就会填满?

那么大家想一下,这个系统大概运行多久,老年代会填满呢?

按照上述计算,每分钟都是一个轮回,大概算下来是每分钟都会把新生代的Eden区填满,然后触发一次Minor GC,然后大概都会有200MB左右的数据进入老年代。

那么大家可以想一下,假设现在2分钟运行过去了,此时老年代已经有400MB内存被占用了,只有1.1GB的内存可用,此时如果第3分钟运行完毕,又要进行Minor GC,会做什么检查呢?如下图。

此时会先检查老年代可用空间是否大于新生代全部对象?

此时老年代可用空间1.1GB,新生代对象有1.2GB,那么此时假设一次Minor GC过后新生代对象全部存活,老年代是放不下的,那么此时就得看看一个参数是否打开了 。

如果“-XX:-HandlePromotionFailure”参数被打开了,当然一般都会打开,此时会进入第二步检查,就是看看老年代可用空间是否大于历次Minor GC过后进入老年代的对象的平均大小。

我们已经计算过了,大概每分钟会执行一次Minor GC,每次大概200MB对象会进入老年代。

那么此时发现老年代的1.1GB空间,是大于每次Minor GC后平均200MB对象进入老年代的大小的

所以基本可以推测,本次Minor GC后大概率还是有200MB对象进入老年代,1.1G可用空间是足够的。

所以此时就会放心执行一次Minor GC,然后又是200MB对象进入老年代。

转折点大概在运行了7分钟过后,7次Minor GC执行过后,大概1.4G对象进入老年代,老年代剩余空间就不到100MB了,几乎快满了

如下图:


这个系统运行多久,老年代会触发1次Full GC?

大概在第8分钟运行结束的时候,新生代又满了,执行Minor GC之前进行检查,此时发现老年代只有100MB内存空间了,比之前每次Minor GC后进入老年代的200MB对象要小,此时就会直接触发一次Full GC。

Full GC会把老年代的垃圾对象都给回收了,假设此时老年代被占据的1.4G空间里,全部都是可以回收的对象,那么此时一次性就会把这些对象都给回收了,如下图。

然后接着就会执行Minor GC,此时Eden区情况,200MB对象再次进入老年代,之前的Full GC就是为这些新生代本次Minor GC要进入老年代的对象准备的,如下图。

按照这个运行模型,基本上平均就是七八分钟一次Full GC,这个频率就相当高了。因为每次Full GC速度都是很慢的,性能很差


如何进行JVM优化?

相信通过这个案例,大家结合图一路看下来,对新生代和老年代如何配合使用,然后什么情况下触发Minor GC和Full GC,什么情况下会导致频繁的Minor GC和Full GC,大家都有了更加深层次和透彻的理解了。

对这个系统,其实要优化也是很简单的,因为这个系统是数据计算系统,每次Minor GC的时候,必然会有一批数据没计算完毕

但是按照现有的内存模型,最大的问题,其实就是每次Survivor区域放不下存活对象。

所以当时我们就是对生产系统进行了调整,增加了新生代的内存比例,3GB左右的堆内存,其中2GB分配给新生代,1GB留给老年代

这样Survivor区大概就是200MB,每次刚好能放得下Minor GC过后存活的对象了,如下图所示。

只要每次Minor GC过后200MB存活对象可以放Survivor区域,那么等下一次Minor GC的时候,这个Survivor区的对象对应的计算任务早就结束了,都是可以回收的了

此时比如Eden区里1.6GB空间被占满了,然后Survivor1区里有200MB上一轮 Minor GC后存活的对象,如下图。

然后此时执行Minor GC,就会把Eden区里1.6GB对象回收掉,Survivor1区里的200MB对象也会回收掉,然后Eden区里剩余的200MB存活对象会放入Survivor2区里,如下图。

以此类推,基本上就很少对象会进入老年代中,老年代里的对象也不会太多的。

通过这个分析和优化,定时我们成功的把生产系统的老年代Full GC的频率从几分钟一次降低到了几个小时一次,大幅度提升了系统的性能,避免了频繁Full GC对系统运行的影响。

但是大家在这里肯定注意到一点,就是之前说过一个动态年龄判定升入老年代的规则,就是如果Survivor区中的同龄对象大小超过Survivor区内存的一半,就要直接升入老年代。所以这里优化的方式仅仅是做一个示例说明,意思是要增加Survivor区的大小,让Minor GC后的对象进入Survivor区中,避免进入老年代。

实际上为了避免动态年龄判定规则把Survivor区中的对象直接升入老年代,在这里如果新生代内存有限,那么可以调整"-XX:SurvivorRatio=8"这个参数,默认是说Eden区比例为80%,也可以降低Eden区的比例,给两块Survivor区更多的内存空间,然后让每次Minor GC后的对象进入Survivor区中,还可以避免动态年龄判定规则直接把他们升入老年代。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 监控 算法
jvm-性能调优(二)
jvm-性能调优(二)
|
4月前
|
Arthas 监控 Java
(十一)JVM成神路之性能调优篇:GC调优、Arthas工具详解及各场景下线上最佳配置推荐
“在当前的互联网开发模式下,系统访问量日涨、并发暴增、线上瓶颈等各种性能问题纷涌而至,性能优化成为了现时代开发过程中炙手可热的名词,无论是在开发、面试过程中,性能优化都是一个常谈常新的话题”。
388 3
|
7天前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
15天前
|
Arthas 监控 数据可视化
JVM进阶调优系列(7)JVM调优监控必备命令、工具集合|实用干货
本文介绍了JVM调优监控命令及其应用,包括JDK自带工具如jps、jinfo、jstat、jstack、jmap、jhat等,以及第三方工具如Arthas、GCeasy、MAT、GCViewer等。通过这些工具,可以有效监控和优化JVM性能,解决内存泄漏、线程死锁等问题,提高系统稳定性。文章还提供了详细的命令示例和应用场景,帮助读者更好地理解和使用这些工具。
|
20天前
|
监控 架构师 Java
JVM进阶调优系列(6)一文详解JVM参数与大厂实战调优模板推荐
本文详述了JVM参数的分类及使用方法,包括标准参数、非标准参数和不稳定参数的定义及其应用场景。特别介绍了JVM调优中的关键参数,如堆内存、垃圾回收器和GC日志等配置,并提供了大厂生产环境中常用的调优模板,帮助开发者优化Java应用程序的性能。
|
25天前
|
Java 应用服务中间件 程序员
JVM知识体系学习八:OOM的案例(承接上篇博文,可以作为面试中的案例)
这篇文章通过多个案例深入探讨了Java虚拟机(JVM)中的内存溢出问题,涵盖了堆内存、方法区、直接内存和栈内存溢出的原因、诊断方法和解决方案,并讨论了不同JDK版本垃圾回收器的变化。
24 4
|
25天前
|
Arthas 监控 Java
JVM知识体系学习七:了解JVM常用命令行参数、GC日志详解、调优三大方面(JVM规划和预调优、优化JVM环境、JVM运行出现的各种问题)、Arthas
这篇文章全面介绍了JVM的命令行参数、GC日志分析以及性能调优的各个方面,包括监控工具使用和实际案例分析。
38 3
|
27天前
|
存储 缓存 监控
聊聊JIT是如何影响JVM性能的!
聊聊JIT是如何影响JVM性能的!
|
27天前
|
Java API 对象存储
JVM进阶调优系列(2)字节面试:JVM内存区域怎么划分,分别有什么用?
本文详细解析了JVM类加载过程的关键步骤,包括加载验证、准备、解析和初始化等阶段,并介绍了元数据区、程序计数器、虚拟机栈、堆内存及本地方法栈的作用。通过本文,读者可以深入了解JVM的工作原理,理解类加载器的类型及其机制,并掌握类加载过程中各阶段的具体操作。
|
26天前
|
算法 Java
JVM进阶调优系列(4)年轻代和老年代采用什么GC算法回收?
本文详细介绍了JVM中的GC算法,包括年轻代的复制算法和老年代的标记-整理算法。复制算法适用于年轻代,因其高效且能避免内存碎片;标记-整理算法则用于老年代,虽然效率较低,但能有效解决内存碎片问题。文章还解释了这两种算法的具体过程及其优缺点,并简要提及了其他GC算法。
 JVM进阶调优系列(4)年轻代和老年代采用什么GC算法回收?