Apache Kafka-初体验Kafka(03)-Centos7下搭建kafka集群

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: Apache Kafka-初体验Kafka(03)-Centos7下搭建kafka集群


概述

对于kafka来说,一个单独的broker意味着kafka集群中只有一个节点。要想增加kafka集群中的节点数量,只需要多启动几个broker实例即可。

单个节点的安装: Kafka-初体验Kafka(02)-Centos7下搭建单节点kafka_2.11‐1.1.0

这里我们来搭建个3个节点的kafka集群来体验下吧


部署信息

192.168.18.130 —> kafka 、 zookeeper(单节点的zk)

192.168.18.131 —> kafka

192.168.18.132 —> kafka

单节点的 zk , 部署上 130上,事实上生产环境的话,zk也是要搭建集群的,这里演示用的话,用单个节点的zk先。

3个节点的kafka注册到 单节点的zk上。


配置信息

kafka的配置文件主要是配置文件 server.properties

130

[root@artisan config]# grep -Ev '^$|^[#;]' server.properties 
broker.id=0
listeners=PLAINTEXT://192.168.18.130:9092
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/tmp/kafka-logs
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
zookeeper.connect=192.168.18.130:2181
zookeeper.connection.timeout.ms=6000
group.initial.rebalance.delay.ms=0
[root@artisan config]# 


131

[root@artisan config]#  grep -Ev '^$|^[#;]' server.properties
broker.id=1
listeners=PLAINTEXT://192.168.18.131:9092
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/tmp/kafka-logs
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
zookeeper.connect=192.168.18.130:2181
zookeeper.connection.timeout.ms=6000
group.initial.rebalance.de


132

[root@artisan config]#  grep -Ev '^$|^[#;]' server.properties
broker.id=2
listeners=PLAINTEXT://192.168.18.132:9092
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/tmp/kafka-logs
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
zookeeper.connect=192.168.18.130:2181
zookeeper.connection.timeout.ms=6000
group.initial.rebalance.delay.ms=0
[root@artisan config]# 

还有一篇博主写的 zk也是高可用的,可以参考下,写的很不错 ZooKeeper+Kafka 高可用集群搭建


验证

启动zookeeper 和 3个 kafka 后,我们创建一个新的topic,副本数设置为3,分区数设置为2

[root@artisan bin]# ./kafka-topics.sh --create --zookeeper 192.168.18.130:2181 --replication-factor 3 --partitions 2 --topic artisan-replicated-topic
Created topic "artisan-replicated-topic".
[root@artisan bin]# 

查看topic的情况

[root@artisan bin]# ./kafka-topics.sh --describe --zookeeper 192.168.18.130:2181 --topic artisan-replicated-topic
Topic:artisan-replicated-topic  PartitionCount:2  ReplicationFactor:3 Configs:
  Topic: artisan-replicated-topic Partition: 0  Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
  Topic: artisan-replicated-topic Partition: 1  Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
[root@artisan bin]# 

我们来解释下上面的输出内容

第一行是所有分区的概要信息,之后的每一行表示每一个partition的信息。

所有分区的概要信息:

Topic:artisan-replicated-topic  PartitionCount:2  ReplicationFactor:3 Configs

每一个partition的信息:

Topic: artisan-replicated-topic Partition: 0  Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
Topic: artisan-replicated-topic Partition: 1  Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
  • leader节点负责给定partition的所有读写请求。
  • replicas 表示某个partition在哪几个broker上存在备份。不管这个几点是不是”leader“,甚至这个节点挂了,也会列出
  • isr 是replicas的一个子集,它只列出当前还存活着的,并且已同步备份了该partition的节点。

我们可以运行相同的命令查看之前创建的名称为”artisan“的topic

[root@artisan bin]# ./kafka-topics.sh --describe --zookeeper 192.168.18.130:2181 --topic artisan
Topic:artisan PartitionCount:1  ReplicationFactor:1 Configs:
  Topic: artisan  Partition: 0  Leader: 0 Replicas: 0 Isr: 0
[root@artisan bin]# 

之前设置了topic的partition数量为1,备份因子为1,因此显示就如上所示了。当然我们也可以通过如下命令增加topic的分区数量(目前kafka不支持减少分区):

[root@artisan bin]# ./kafka-topics.sh --alter --partitions 3 --zookeeper 192.168.18.130:2181 --topic artisan
WARNING: If partitions are increased for a topic that has a key, the partition logic or ordering of the messages will be affected
Adding partitions succeeded!

重新查看

[root@artisan bin]# ./kafka-topics.sh --describe --zookeeper 192.168.18.130:2181 --topic artisan
Topic:artisan PartitionCount:3  ReplicationFactor:1 Configs:
  Topic: artisan  Partition: 0  Leader: 0 Replicas: 0 Isr: 0
  Topic: artisan  Partition: 1  Leader: 1 Replicas: 1 Isr: 1
  Topic: artisan  Partition: 2  Leader: 2 Replicas: 2 Isr: 2
[root@artisan bin]# 

现在我们向新建的 artisan-replicated-topic 中发送一些message,kafka集群可以加上所有kafka节点:

[root@artisan bin]# ./kafka-console-producer.sh --broker-list 192.168.18.130:9092,192.168.18.131:9092,192.168.18.132:9092 --topic  artisan-replicated-topic
>artisan message test 1
>artisan message test 2
>artisan message test 3
>

现在131broker 开始消费:

[root@artisan bin]# ./kafka-console-consumer.sh --bootstrap-server 192.168.18.131:9092 --from-beginning --topic artisan-replicated-topic
artisan message test 1
artisan message test 3
artisan message test 2

现在我们来测试我们 容错性 ,因为broker1目前是artisan-replicated-topic的分区0的 leader,所以我们要将其kill , kill 掉 131 节点的 kafka

再执行

[root@artisan bin]# ./kafka-topics.sh --describe --zookeeper 192.168.18.130:2181 --topic artisan-replicated-topic
Topic:artisan-replicated-topic  PartitionCount:2  ReplicationFactor:3 Configs:
  Topic: artisan-replicated-topic Partition: 0  Leader: 2 Replicas: 1,2,0 Isr: 0,2
  Topic: artisan-replicated-topic Partition: 1  Leader: 2 Replicas: 2,0,1 Isr: 2,0
[root@artisan bin]# 

我们可以看到,分区0的leader节点已经变成了broker 2。要注意的是,在Isr中,已经没有了1号节点。leader的选举也是从ISR(in-sync replica)中进行的。

131 重新起来以后,还是可以消费消息

[root@artisan bin]# ./kafka-server-start.sh -daemon ../config/server.properties 
[root@artisan bin]# jps
24436 Kafka
24455 Jps
[root@artisan bin]# ./kafka-console-consumer.sh --bootstrap-server 192.168.18.131:9092 --from-beginning --topic artisan-replicated-topic
artisan message test 1
artisan message test 3
artisan message test 2

再看下

[root@artisan bin]# ./kafka-topics.sh --describe --zookeeper 192.168.18.130:2181 --topic artisan-replicated-topic
Topic:artisan-replicated-topic  PartitionCount:2  ReplicationFactor:3 Configs:
  Topic: artisan-replicated-topic Partition: 0  Leader: 1 Replicas: 1,2,0 Isr: 0,2,1
  Topic: artisan-replicated-topic Partition: 1  Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
[root@artisan bin]# 
[root@artisan bin]# 


相关文章
|
5天前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
32 7
|
5天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
31 5
|
3天前
|
消息中间件 Ubuntu Java
Ubuntu系统上安装Apache Kafka
Ubuntu系统上安装Apache Kafka
|
4天前
|
消息中间件 监控 Kafka
Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面
随着大数据技术的发展,Apache Kafka 成为处理实时数据流的关键组件。Kafka Manager 提供了一个简洁的 Web 界面,方便管理和监控 Kafka 集群。本文详细介绍了 Kafka Manager 的部署步骤和基本使用方法,包括配置文件的修改、启动命令、API 示例代码等,帮助你快速上手并有效管理 Kafka 集群。
14 0
|
3月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
44 1
|
15天前
|
SQL Java API
Apache Flink 2.0-preview released
Apache Flink 社区正积极筹备 Flink 2.0 的发布,这是自 Flink 1.0 发布以来的首个重大更新。Flink 2.0 将引入多项激动人心的功能和改进,包括存算分离状态管理、物化表、批作业自适应执行等,同时也包含了一些不兼容的变更。目前提供的预览版旨在让用户提前尝试新功能并收集反馈,但不建议在生产环境中使用。
457 13
Apache Flink 2.0-preview released
|
20天前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
44 3
|
2月前
|
SQL 消息中间件 关系型数据库
Apache Doris Flink Connector 24.0.0 版本正式发布
该版本新增了对 Flink 1.20 的支持,并支持通过 Arrow Flight SQL 高速读取 Doris 中数据。
|
3月前
|
消息中间件 监控 数据挖掘
基于RabbitMQ与Apache Flink构建实时分析系统
【8月更文第28天】本文将介绍如何利用RabbitMQ作为数据源,结合Apache Flink进行实时数据分析。我们将构建一个简单的实时分析系统,该系统能够接收来自不同来源的数据,对数据进行实时处理,并将结果输出到另一个队列或存储系统中。
186 2
|
3月前
|
消息中间件 分布式计算 Hadoop
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
45 3