Flink 动态更新配置,不需要重启作业

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink 动态更新配置,不需要重启作业

我们知道 Flink 作业的配置一般都是通过在作业启动的时候通过参数传递的,或者通过读取配置文件的参数,在作业启动后初始化了之后如果再想更新作业的配置一般有两种解决方法:

(1)改变启动参数或者改变配置文件,重启作业,让作业能够读取到修改后的配置

(2)通过读取配置流(需要自定义 Source 读取配置),然后流和流连接起来

(3)读取配置信息,从mysql或者redis

今天介绍的是一种用配置中心。携程 apollo、spring cloud config、nacos 等

Flink open 方法

 

invoke 方法:

日志打印结果:

之前在京东的时候有了解过这种分布式配置中,DUCC。感兴趣的可以看看相关文档,是如何实现的。


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
消息中间件 分布式计算 大数据
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
大数据-123 - Flink 并行度 相关概念 全局、作业、算子、Slot并行度 Flink并行度设置与测试
149 0
|
2月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
71 0
|
2月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
77 0
|
1月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
79 9
|
2月前
|
Java Shell Maven
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
130 4
|
2月前
|
消息中间件 分布式计算 大数据
大数据-128 - Flink 并行度设置 细节详解 全局、作业、算子、Slot
大数据-128 - Flink 并行度设置 细节详解 全局、作业、算子、Slot
142 0
|
2月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
193 0
|
3月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
1月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1164 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
155 56
下一篇
DataWorks