Flink读取网络数据

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Flink读取网络数据

1.pom

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-java_2.11</artifactId>
    <version>1.5.6</version>
</dependency>

2.代码

package com.jd.xq;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
/**
 * @author duanxiaoqiu
 * @Date 2019-08-16 15:45
 **/
public class StartJob {
    public static void main(String[] args) throws Exception {
        // 创建 execution environment
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 通过连接 socket 获取输入数据,这里连接到本地9000端口,如果9000端口已被占用,请换一个端口
        DataStream<String> text = env.socketTextStream("localhost", 9000, "\n");
        // 解析数据,按 word 分组,开窗,聚合
        DataStream<Tuple2<String, Integer>> windowCounts = text
                .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
                        for (String word : value.split("\\s")) {
                            out.collect(Tuple2.of(word, 1));
                        }
                    }
                })
                .keyBy(0)
                .timeWindow(Time.seconds(5))
                .sum(1);
        // 将结果打印到控制台,注意这里使用的是单线程打印,而非多线程
        windowCounts.print().setParallelism(1);
        env.execute("Socket Window WordCount");
    }
}

2.本地运行

 


相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
4月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
817 43
|
3月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
360 0
|
4月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
300 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
4月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
145 0
|
5月前
|
数据采集 存储 算法
MyEMS 开源能源管理系统:基于 4G 无线传感网络的能源数据闭环管理方案
MyEMS 是开源能源管理领域的标杆解决方案,采用 Python、Django 与 React 技术栈,具备模块化架构与跨平台兼容性。系统涵盖能源数据治理、设备管理、工单流转与智能控制四大核心功能,结合高精度 4G 无线计量仪表,实现高效数据采集与边缘计算。方案部署灵活、安全性高,助力企业实现能源数字化与碳减排目标。
153 0
|
6月前
|
Python
LBA-ECO CD-32 通量塔网络数据汇编,巴西亚马逊:1999-2006,V2
该数据集汇集了1999年至2006年间巴西亚马逊地区九座观测塔的碳和能量通量、气象、辐射等多类数据,涵盖小时至月度时间步长。作为第二版汇编,数据经过协调与质量控制,扩展了第一版内容,并新增生态系统呼吸等相关计算数据,支持综合研究与模型合成。数据以36个制表符分隔文本文件形式提供,配套PDF说明文件,适用于生态与气候研究。引用来源为Restrepo-Coupe等人(2021)。
114 1
|
8月前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
838 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
2月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
140 0
|
3月前
|
机器学习/深度学习 数据采集 运维
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
|
4月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1872 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路

热门文章

最新文章