免费背景音人声分离解决方案MVSEP-MDX23,足以和Spleeter分庭抗礼

简介: 在音视频领域,把已经发布的混音歌曲或者音频文件逆向分离一直是世界性的课题。音波混合的物理特性导致在没有原始工程文件的情况下,将其还原和分离是一件很有难度的事情。 言及背景音人声分离技术,就不能不提Spleeter,它是一种用于音频源分离(音乐分离)的开源深度学习算法,由Deezer研究团队开发。使用的是一个性能取向的音源分离算法,并且为用户提供了已经预训练好的模型,能够开箱即用,这也是Spleeter泛用性高的原因之一,关于Spleeter,请移步:[人工智能AI库Spleeter免费人声和背景音乐分离实践(Python3.10)](https://v3u.cn/a_id_305),这里

player_zh_upscayl_3x_realesrgan-x4plus.jpg

在音视频领域,把已经发布的混音歌曲或者音频文件逆向分离一直是世界性的课题。音波混合的物理特性导致在没有原始工程文件的情况下,将其还原和分离是一件很有难度的事情。

言及背景音人声分离技术,就不能不提Spleeter,它是一种用于音频源分离(音乐分离)的开源深度学习算法,由Deezer研究团队开发。使用的是一个性能取向的音源分离算法,并且为用户提供了已经预训练好的模型,能够开箱即用,这也是Spleeter泛用性高的原因之一,关于Spleeter,请移步:人工智能AI库Spleeter免费人声和背景音乐分离实践(Python3.10),这里不再赘述。

MVSEP-MDX23背景音人声分离技术由Demucs研发,Demucs来自Facebook Research团队,它的发源晚于Spleeter,早于MDX-Net,并且经历过4个大版本的迭代,每一代的模型结构都被大改。Demucs的生成质量从v3开始大幅质变,一度领先行业平均水平,v4是现在最强的开源乐器分离单模型,v1和v2的网络模型被用作MDX-net其中的一部分。

本次我们基于MVSEP-MDX23来对音频的背景音和人声进行分离。

本地分离人声和背景音

如果本地离线运行MVSEP-MDX23,首先克隆代码:

git clone https://github.com/jarredou/MVSEP-MDX23-Colab_v2.git

随后进入项目并安装依赖:

cd MVSEP-MDX23-Colab_v2  
pip3 install -r requirements.txt

随后直接进推理即可:

python3 inference.py --input_audio test.wav --output_folder ./results/

这里将test.wav进行人声分离,分离后的文件在results文件夹生成。

注意推理过程中会将分离模型下载到项目的models目录,极其巨大。

同时推理过程相当缓慢。

这里可以添加--single_onnx参数来提高推理速度,但音质上有一定的损失。

如果本地设备具备12G以上的显存,也可以添加--large_gpu参数来提高推理的速度。

如果本地没有N卡或者显存实在捉襟见肘,也可以通过--cpu参数来使用cpu进行推理,但是并不推荐这样做,因为本来就慢,用cpu就更慢了。

令人暖心的是,官方还利用Pyqt写了一个小的gui界面来提高操作友好度:

__author__ = 'Roman Solovyev (ZFTurbo), IPPM RAS'  

if __name__ == '__main__':  
    import os  

    gpu_use = "0"  
    print('GPU use: {}'.format(gpu_use))  
    os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)  

import time  
import os  
import numpy as np  
from PyQt5.QtCore import *  
from PyQt5 import QtCore  
from PyQt5.QtWidgets import *  
import sys  
from inference import predict_with_model  


root = dict()  


class Worker(QObject):  
    finished = pyqtSignal()  
    progress = pyqtSignal(int)  

    def __init__(self, options):  
        super().__init__()  
        self.options = options  

    def run(self):  
        global root  
        # Here we pass the update_progress (uncalled!)  
        self.options['update_percent_func'] = self.update_progress  
        predict_with_model(self.options)  
        root['button_start'].setDisabled(False)  
        root['button_finish'].setDisabled(True)  
        root['start_proc'] = False  
        self.finished.emit()  

    def update_progress(self, percent):  
        self.progress.emit(percent)  


class Ui_Dialog(object):  
    def setupUi(self, Dialog):  
        global root  

        Dialog.setObjectName("Settings")  
        Dialog.resize(370, 180)  

        self.checkbox_cpu = QCheckBox("Use CPU instead of GPU?", Dialog)  
        self.checkbox_cpu.move(30, 10)  
        self.checkbox_cpu.resize(320, 40)  
        if root['cpu']:  
            self.checkbox_cpu.setChecked(True)  

        self.checkbox_single_onnx = QCheckBox("Use single ONNX?", Dialog)  
        self.checkbox_single_onnx.move(30, 40)  
        self.checkbox_single_onnx.resize(320, 40)  
        if root['single_onnx']:  
            self.checkbox_single_onnx.setChecked(True)  

        self.pushButton_save = QPushButton(Dialog)  
        self.pushButton_save.setObjectName("pushButton_save")  
        self.pushButton_save.move(30, 120)  
        self.pushButton_save.resize(150, 35)  

        self.pushButton_cancel = QPushButton(Dialog)  
        self.pushButton_cancel.setObjectName("pushButton_cancel")  
        self.pushButton_cancel.move(190, 120)  
        self.pushButton_cancel.resize(150, 35)  

        self.retranslateUi(Dialog)  
        QtCore.QMetaObject.connectSlotsByName(Dialog)  
        self.Dialog = Dialog  

        # connect the two functions  
        self.pushButton_save.clicked.connect(self.return_save)  
        self.pushButton_cancel.clicked.connect(self.return_cancel)  

    def retranslateUi(self, Dialog):  
        _translate = QtCore.QCoreApplication.translate  
        Dialog.setWindowTitle(_translate("Settings", "Settings"))  
        self.pushButton_cancel.setText(_translate("Settings", "Cancel"))  
        self.pushButton_save.setText(_translate("Settings", "Save settings"))  

    def return_save(self):  
        global root  
        # print("save")  
        root['cpu'] = self.checkbox_cpu.isChecked()  
        root['single_onnx'] = self.checkbox_single_onnx.isChecked()  
        self.Dialog.close()  

    def return_cancel(self):  
        global root  
        # print("cancel")  
        self.Dialog.close()  


class MyWidget(QWidget):  
    def __init__(self):  
        super().__init__()  
        self.initUI()  

    def initUI(self):  
        self.resize(560, 360)  
        self.move(300, 300)  
        self.setWindowTitle('MVSEP music separation model')  
        self.setAcceptDrops(True)  

    def dragEnterEvent(self, event):  
        if event.mimeData().hasUrls():  
            event.accept()  
        else:  
            event.ignore()  

    def dropEvent(self, event):  
        global root  
        files = [u.toLocalFile() for u in event.mimeData().urls()]  
        txt = ''  
        root['input_files'] = []  
        for f in files:  
            root['input_files'].append(f)  
            txt += f + '\n'  
        root['input_files_list_text_area'].insertPlainText(txt)  
        root['progress_bar'].setValue(0)  

    def execute_long_task(self):  
        global root  

        if len(root['input_files']) == 0 and 1:  
            QMessageBox.about(root['w'], "Error", "No input files specified!")  
            return  

        root['progress_bar'].show()  
        root['button_start'].setDisabled(True)  
        root['button_finish'].setDisabled(False)  
        root['start_proc'] = True  

        options = {  
            'input_audio': root['input_files'],  
            'output_folder': root['output_folder'],  
            'cpu': root['cpu'],  
            'single_onnx': root['single_onnx'],  
            'overlap_large': 0.6,  
            'overlap_small': 0.5,  
        }  

        self.update_progress(0)  
        self.thread = QThread()  
        self.worker = Worker(options)  
        self.worker.moveToThread(self.thread)  

        self.thread.started.connect(self.worker.run)  
        self.worker.finished.connect(self.thread.quit)  
        self.worker.finished.connect(self.worker.deleteLater)  
        self.thread.finished.connect(self.thread.deleteLater)  
        self.worker.progress.connect(self.update_progress)  

        self.thread.start()  

    def stop_separation(self):  
        global root  
        self.thread.terminate()  
        root['button_start'].setDisabled(False)  
        root['button_finish'].setDisabled(True)  
        root['start_proc'] = False  
        root['progress_bar'].hide()  

    def update_progress(self, progress):  
        global root  
        root['progress_bar'].setValue(progress)  

    def open_settings(self):  
        global root  
        dialog = QDialog()  
        dialog.ui = Ui_Dialog()  
        dialog.ui.setupUi(dialog)  
        dialog.exec_()  


def dialog_select_input_files():  
    global root  
    files, _ = QFileDialog.getOpenFileNames(  
        None,  
        "QFileDialog.getOpenFileNames()",  
        "",  
        "All Files (*);;Audio Files (*.wav, *.mp3, *.flac)",  
    )  
    if files:  
        txt = ''  
        root['input_files'] = []  
        for f in files:  
            root['input_files'].append(f)  
            txt += f + '\n'  
        root['input_files_list_text_area'].insertPlainText(txt)  
        root['progress_bar'].setValue(0)  
    return files  


def dialog_select_output_folder():  
    global root  
    foldername = QFileDialog.getExistingDirectory(  
        None,  
        "Select Directory"  
    )  
    root['output_folder'] = foldername + '/'  
    root['output_folder_line_edit'].setText(root['output_folder'])  
    return foldername  


def create_dialog():  
    global root  
    app = QApplication(sys.argv)  

    w = MyWidget()  

    root['input_files'] = []  
    root['output_folder'] = os.path.dirname(os.path.abspath(__file__)) + '/results/'  
    root['cpu'] = False  
    root['single_onnx'] = False  

    button_select_input_files = QPushButton(w)  
    button_select_input_files.setText("Input audio files")  
    button_select_input_files.clicked.connect(dialog_select_input_files)  
    button_select_input_files.setFixedHeight(35)  
    button_select_input_files.setFixedWidth(150)  
    button_select_input_files.move(30, 20)  

    input_files_list_text_area = QTextEdit(w)  
    input_files_list_text_area.setReadOnly(True)  
    input_files_list_text_area.setLineWrapMode(QTextEdit.NoWrap)  
    font = input_files_list_text_area.font()  
    font.setFamily("Courier")  
    font.setPointSize(10)  
    input_files_list_text_area.move(30, 60)  
    input_files_list_text_area.resize(500, 100)  

    button_select_output_folder = QPushButton(w)  
    button_select_output_folder.setText("Output folder")  
    button_select_output_folder.setFixedHeight(35)  
    button_select_output_folder.setFixedWidth(150)  
    button_select_output_folder.clicked.connect(dialog_select_output_folder)  
    button_select_output_folder.move(30, 180)  

    output_folder_line_edit = QLineEdit(w)  
    output_folder_line_edit.setReadOnly(True)  
    font = output_folder_line_edit.font()  
    font.setFamily("Courier")  
    font.setPointSize(10)  
    output_folder_line_edit.move(30, 220)  
    output_folder_line_edit.setFixedWidth(500)  
    output_folder_line_edit.setText(root['output_folder'])  

    progress_bar = QProgressBar(w)  
    # progress_bar.move(30, 310)  
    progress_bar.setValue(0)  
    progress_bar.setGeometry(30, 310, 500, 35)  
    progress_bar.setAlignment(QtCore.Qt.AlignCenter)  
    progress_bar.hide()  
    root['progress_bar'] = progress_bar  

    button_start = QPushButton('Start separation', w)  
    button_start.clicked.connect(w.execute_long_task)  
    button_start.setFixedHeight(35)  
    button_start.setFixedWidth(150)  
    button_start.move(30, 270)  

    button_finish = QPushButton('Stop separation', w)  
    button_finish.clicked.connect(w.stop_separation)  
    button_finish.setFixedHeight(35)  
    button_finish.setFixedWidth(150)  
    button_finish.move(200, 270)  
    button_finish.setDisabled(True)  

    button_settings = QPushButton('⚙', w)  
    button_settings.clicked.connect(w.open_settings)  
    button_settings.setFixedHeight(35)  
    button_settings.setFixedWidth(35)  
    button_settings.move(495, 270)  
    button_settings.setDisabled(False)  

    mvsep_link = QLabel(w)  
    mvsep_link.setOpenExternalLinks(True)  
    font = mvsep_link.font()  
    font.setFamily("Courier")  
    font.setPointSize(10)  
    mvsep_link.move(415, 30)  
    mvsep_link.setText('Powered by <a href="https://mvsep.com">MVSep.com</a>')  

    root['w'] = w  
    root['input_files_list_text_area'] = input_files_list_text_area  
    root['output_folder_line_edit'] = output_folder_line_edit  
    root['button_start'] = button_start  
    root['button_finish'] = button_finish  
    root['button_settings'] = button_settings  

    # w.showMaximized()  
    w.show()  
    sys.exit(app.exec_())  


if __name__ == '__main__':  
    create_dialog()

效果如下:

界面虽然朴素,但相当实用,Spleeter可没给我们提供这个待遇。

Colab云端分离人声和背景音

托Google的福,我们也可以在Colab云端使用MVSEP-MDX23:

https://colab.research.google.com/github/jarredou/MVSEP-MDX23-Colab_v2/blob/v2.3/MVSep-MDX23-Colab.ipynb#scrollTo=uWX5WOqjU0QC

首先安装MVSEP-MDX23:

#@markdown #Installation  
#@markdown *Run this cell to install MVSep-MDX23*  
print('Installing... This will take 1 minute...')  
%cd /content  
from google.colab import drive  
drive.mount('/content/drive')  
!git clone https://github.com/jarredou/MVSEP-MDX23-Colab_v2.git &> /dev/null  
%cd /content/MVSEP-MDX23-Colab_v2  
!pip install -r requirements.txt &> /dev/null  
# onnxruntime-gpu nightly fix for cuda12.2  
!python -m pip install ort-nightly-gpu --index-url=https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/ort-cuda-12-nightly/pypi/simple/  
print('Installation done !')

随后编写推理代码:

#@markdown #Separation  
from pathlib import Path  
import glob  

%cd /content/MVSEP-MDX23-Colab_v2  


input = '/content/drive/MyDrive' #@param {type:"string"}  
output_folder = '/content/drive/MyDrive/output' #@param {type:"string"}  
#@markdown ---  
#@markdown *Bigshifts=1 to disable that feature*  

BigShifts = 7 #@param {type:"slider", min:1, max:41, step:1}  
#@markdown ---  
overlap_InstVoc = 1 #@param {type:"slider", min:1, max:40, step:1}  
overlap_VitLarge = 1 #@param {type:"slider", min:1, max:40, step:1}  
#@markdown ---  
weight_InstVoc = 8 #@param {type:"slider", min:0, max:10, step:1}  
weight_VitLarge = 5 #@param {type:"slider", min:0, max:10, step:1}  
#@markdown ---  
use_VOCFT = False #@param {type:"boolean"}  
overlap_VOCFT = 0.1 #@param {type:"slider", min:0, max:0.95, step:0.05}  
weight_VOCFT = 2 #@param {type:"slider", min:0, max:10, step:1}  
#@markdown ---  
vocals_instru_only = True #@param {type:"boolean"}  
overlap_demucs = 0.6 #@param {type:"slider", min:0, max:0.95, step:0.05}  
#@markdown ---  
output_format = 'PCM_16' #@param ["PCM_16", "FLOAT"]  
if vocals_instru_only:  
    vocals_only = '--vocals_only true'  
else:  
    vocals_only = ''  


if use_VOCFT:  
    use_VOCFT = '--use_VOCFT true'  
else:  
    use_VOCFT = ''  

if Path(input).is_file():  
  file_path = input  
  Path(output_folder).mkdir(parents=True, exist_ok=True)  
  !python inference.py \  
        --large_gpu \  
        --weight_InstVoc {weight_InstVoc} \  
        --weight_VOCFT {weight_VOCFT} \  
        --weight_VitLarge {weight_VitLarge} \  
        --input_audio "{file_path}" \  
        --overlap_demucs {overlap_demucs} \  
        --overlap_VOCFT {overlap_VOCFT} \  
        --overlap_InstVoc {overlap_InstVoc} \  
        --overlap_VitLarge {overlap_VitLarge} \  
        --output_format {output_format} \  
        --BigShifts {BigShifts} \  
        --output_folder "{output_folder}" \  
        {vocals_only} \  
        {use_VOCFT}  

else:  
  file_paths = sorted([f'"{glob.escape(path)}"' for path in glob.glob(input + "/*")])[:]  
  input_audio_args = ' '.join(file_paths)  
  Path(output_folder).mkdir(parents=True, exist_ok=True)  
  !python inference.py \  
          --large_gpu \  
          --weight_InstVoc {weight_InstVoc} \  
          --weight_VOCFT {weight_VOCFT} \  
          --weight_VitLarge {weight_VitLarge} \  
          --input_audio {input_audio_args} \  
          --overlap_demucs {overlap_demucs} \  
          --overlap_VOCFT {overlap_VOCFT} \  
          --overlap_InstVoc {int(overlap_InstVoc)} \  
          --overlap_VitLarge {int(overlap_VitLarge)} \  
          --output_format {output_format} \  
          --BigShifts {BigShifts} \  
          --output_folder "{output_folder}" \  
          {vocals_only} \  
          {use_VOCFT}

这里默认使用google云盘的目录,也可以修改为当前服务器的目录地址。

结语

MVSEP-MDX23 和 Spleeter 都是音频人声背景音分离软件,作为用户,我们到底应该怎么选择?

MVSEP-MDX23 基于 Demucs4 和 MDX 神经网络架构,可以将音乐分离成“bass”、“drums”、“vocals”和“other”四个部分。MVSEP-MDX23 在 2023 年的音乐分离挑战中获得了第三名,并且在 MultiSong 数据集上的质量比较中表现出色。它提供了 Python 命令行工具和 GUI 界面,支持 CPU 和 GPU 加速,可以在本地运行。

Spleeter 是由 Deezer 开发的开源音频分离库,它使用深度学习模型将音频分离成不同的音轨,如人声、伴奏等。Spleeter 提供了预训练的模型,可以在命令行或作为 Python 库使用。它的优势在于易用性和灵活性,可以根据需要分离不同数量的音轨。

总的来说,MVSEP-MDX23 在音频分离的性能和精度上表现出色,尤其适合需要高质量音频分离的专业用户。而 Spleeter 则更适合普通用户和开发者,因为它易于使用,并且具有更多的定制选项。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
6月前
|
编解码
在智能媒体服务中,素材的清晰度差异可能是由以下几个原因导致
在智能媒体服务中,素材的清晰度差异可能是由以下几个原因导致【1月更文挑战第10天】【1月更文挑战第48篇】
72 3
|
3月前
|
开发者 图形学 C#
揭秘游戏沉浸感的秘密武器:深度解析Unity中的音频设计技巧,从背景音乐到动态音效,全面提升你的游戏氛围艺术——附实战代码示例与应用场景指导
【8月更文挑战第31天】音频设计在游戏开发中至关重要,不仅能增强沉浸感,还能传递信息,构建氛围。Unity作为跨平台游戏引擎,提供了丰富的音频处理功能,助力开发者轻松实现复杂音效。本文将探讨如何利用Unity的音频设计提升游戏氛围,并通过具体示例代码展示实现过程。例如,在恐怖游戏中,阴森的背景音乐和突然的脚步声能增加紧张感;在休闲游戏中,轻快的旋律则让玩家感到愉悦。
84 0
|
6月前
|
编解码 人工智能
DiT架构大一统:一个框架集成图像、视频、音频和3D生成,可编辑、能试玩
【5月更文挑战第23天】研究人员提出Lumina-T2X框架,统一生成和编辑图像、视频、音频及3D内容。使用Flow-based Large Diffusion Transformer (Flag-DiT)模型,实现多模态生成,支持内容编辑。尽管面临训练资源需求高、生成质量不及人类创作等问题,该框架在娱乐、广告等领域有广泛应用潜力。[论文链接](https://arxiv.org/pdf/2405.05945)
108 1
|
6月前
|
存储 数据处理 API
视觉智能平台常见问题之通用视频生成接口声音和画面对不上如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。
|
6月前
|
并行计算 Linux 异构计算
分享一款刚开源上线3天的音乐人声分离工具!无需联网!页面化操作!
分享一款刚开源上线3天的音乐人声分离工具!无需联网!页面化操作!
|
6月前
|
机器学习/深度学习 API 计算机视觉
视觉智能平台常见问题之用到人脸1:1加上活体需要单独收费如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。
|
6月前
|
人工智能 搜索推荐 语音技术
有道开源的国产语音库EmotiVoice爆火了!具有情绪控制功能的语音合成引擎!
有道开源的国产语音库EmotiVoice爆火了!具有情绪控制功能的语音合成引擎!
1370 0
|
6月前
|
机器学习/深度学习 API 计算机视觉
视觉智能平台常见问题之使用智能分镜功能拆分镜头丢失部分镜头如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。
105 0
|
机器学习/深度学习 编解码 人工智能
【开放视觉】AI人像特效之「更快、更高、更强的互娱换脸解决方案」
换脸技术旨在将图像或者视频中的人脸替换成目标人脸,使生成的图像与目标人脸相似,且具有图像或视频中人脸的外貌特征。作为近几年计算机视觉和图形学领域较热门的应用之一,已被广泛用于互动娱乐,肖像替换,广告宣发,电影后期等场景中。本工作面向互动娱乐场景,扎根于学术前沿,聚焦于行业落地,提出了一个脸型自适应的换脸算法(SaSwap),并结合落地过程中的若干痛点难点逐一攻关,最终以高效的输出方式组成了一套完整的互娱换脸解决方案。
1878 5
【开放视觉】AI人像特效之「更快、更高、更强的互娱换脸解决方案」
堪比文件传输助手!解决文本、图片、视频、音乐跨设备同步难题!
一款比文件传输助手更好用的跨设备文件同步插件,支持剪藏和文件管理,效率翻倍!