【笔记】效率之门——Python中的函数式编程技巧

简介: Python函数式编程我的AI Studio项目:【笔记】LearnDL第三课:Python高级编程——抽象与封装 - 飞桨AI Studio (baidu.com)

Python函数式编程

我的AI Studio项目:【笔记】LearnDL第三课:Python高级编程——抽象与封装 - 飞桨AI Studio (baidu.com)

python中函数式编程的一些技巧,可以提升我们编写代码的效率,写出更加清晰且高效的代码。


开发者关心两个效率,


程序运行的效率:程序用更少的计算资源完成更多的任务。

编写代码的效率:程序员在更少的时间实现更多的功能。

随着计算机算力的不断增长,如今我们更加关心的往往是后者。


本文主要包含以下内容:


函数应当如何使用数据

使用列表推导式或字典推导式简化代码

使用Lambda函数,简化代码

python中一些内置函数的使用技巧

什么是高阶函数

使用函数式编程的技巧完成一个小任务

最后一节“函数式编程的应用”中用到了一个图像数据集,在AI Studio中可以使用它。

1. 数据

  1. 数据的状态——尤为重要
  • 不修改外部环境,不影响输入,多次调用函数不会产生不同的结果
  1. 避免可变的状态
  • 尽量使用不可变的数据结构。例如list可变,而tuple不可变。
# 返回斐波那契数列的某一项
def fib(i):
    if i > 1:
        return fib(i - 1) + fib(i - 2)
    else:
        return 1
print(fib(5))
8

使用可变的数据结构,例如list,有时会踩坑,例如作为函数的默认参数时,下面是一个例子。

你惊讶地发现,put(10)put(5)竟然输出了一样的结果,而你单独运行put(5)时又能得到正确的结果。

def put(n, x=[1, 1]):
    while len(x) < n:
        x.append(x[-1] + x[-2])
    return x
print(put(10))
print(put(5))
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

原因就是,两次调用put函数时,默认参数[1, 1]都是同一个对象,例如可以打印出对象的id(相当于在内存中的地址)看一下,发现两次调用put函数都在直接操作同一个list对象。

def put(n, x=[1, 1]):
    print(id(x))
    while len(x) < n:
        x.append(x[-1] + x[-2])
    return x
put(10), put(5)
140357520173648
140357520173648
([1, 1, 2, 3, 5, 8, 13, 21, 34, 55], [1, 1, 2, 3, 5, 8, 13, 21, 34, 55])

而使用不可变的数据对象作为函数的默认参数,就不会出现该问题。之前因为默认参数list本身也是一个对象实例,“可变”就是可以被篡改;而元组对象本身是无法修改的,后面代码怎么写都不会影响默认参数的值。

下面的例子中,你发现两次调用时元组x的id还是相同的,但是转换成的list的id就不同了,put(5)也得到了正确的结果。

def put(n, x=(1, 1)):
    print("tuple:", id(x))
    x = list(x)
    print("list: ", id(x))
    while len(x) < n:
        x.append(x[-1] + x[-2])
    return x
put(10), put(5)
tuple: 140357563320112
list:  140357519739872
tuple: 140357563320112
list:  140357519346416
([1, 1, 2, 3, 5, 8, 13, 21, 34, 55], [1, 1, 2, 3, 5])

2. 推导式

列表推导式与字典推导式,可以提升我们编码的效率,以及程序运行的效率。

例如前面的put函数,使用推导式,函数体仅需一行代码,而且代码逻辑也清晰易懂。

# 列表推导式
def put(n):
    return [fib(i) for i in range(n)]
print(put(5))
# 字典推导式
def put(n):
    return {i:fib(i) for i in range(n)}
print(put(5))
[1, 1, 2, 3, 5]
{0: 1, 1: 1, 2: 2, 3: 3, 4: 5}

3. 函数式编程

善用一些函数式编程技巧,提高编程效率。

  1. Lambda函数
  2. python内置函数
  • sum:求和
  • all:有一个None就返回False
  • any:有一个不是None,就返回True
  • reduce:自定义求和方式
  1. 高阶函数

3.1. Lambda函数

Lambda定义的函数,与def定义的函数是等价的,但是在形式上更简单

f = lambda a, b : a + b
print(f(1, 2))
def f(a, b):
    return a + b
print(f(1, 2))
3
3

Lambda与其它迭代器对象结合使用,有时会十分方便。例如,生成一个完全平方数列:

# 生成一个完全平方数列
x = list(map(lambda x : x * x, range(11)))
print(x)
# 找到数列中以‘1’结尾的数字,组成一个新的数列
x = list(filter(lambda x : str(x).endswith("1"), x))
print(x)
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
[1, 81]

3.2. python内置函数

关于python内置函数,下面给出几个示例代码。其中allany常用于有效数据的筛选。

x = [1, 2, 3, 4, 5]
print(sum(x))
x = [1, 2, 3, None, 5]
print(all(x))
x = [None, None, 3, None, None]
print(any(x))
x = ['a', 'b', 'c', 'd']
reduce(lambda x, y : x * 2 + y, x)
15
False
True
'aabaabcaabaabcd'

reduce可能看起来不太好懂,其实这里的“求和”对于字符串而言就是“连接”,x作为之前的和传入,y就是下一项,(其实和sum的求和还是很相似的,可以仔细比较一下)。过程如下:


a * 2 + b = aab

aab * 2 + c = aabaabc

aabaabc * 2 + d = aabaabcaabaabcd

3.3. 高阶函数

在python中,函数其实可以玩得挺花。例如,函数可以作为返回值,也可以作为函数的参数

# 1. 函数作为返回值
# 这里例子中,函数k()的定义受函数f()的控制
def f(n):
    def k(x):
        return n * x
    return k
F = f(3)
print(F(2))    
# 2. 函数作为参数
def F(x, f):
    x = f(x)
    return x * x
print(F(1, lambda x : x + 1))
6
4

4. 函数式编程的应用

对于一个任务,先梳理需求,把共性、重复的地方抽象出来,再统一安排

例如下面的任务:

  • 将两个image文件夹归类至dataset/image文件夹,并将文件按照顺序重新编号

待处理数据集结构:

- PlantSegmentationDatasets
  - vinecuttings
    - images
    - masks
  - weeds
    - weed50images
    - weed50masks

images文件夹中都是".JPG"后缀的文件,weed50images中既有".JPG"也有".png"。

首先,我们要得到待复制的所有文件,

dir_1 = "/home/aistudio/PlantSegmentationDatasets/vinecuttings/images/" 
dir_2 = "/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/"
# 1. glob模糊匹配
paths = glob(dir_1 + "*.JPG")
for path in paths[:5]:
    print(path)
# 2. 列表推导式 --> 匹配多种文件后缀
#   此时得到了一个两层嵌套的列表 [[], [], [], []]
ends = ["*.JPG", "*.jpg", "*.png", "*.jpeg"]
paths = [glob(dir_2 + end) for end in ends]
print(paths)
# 3. reduce(求和) --> 拼接嵌套列表为一层
paths = reduce(lambda x, y : x + y, paths)
for path in paths[:5]:
    print(path)

输出

输出内容过长, 已自动对输出内容进行截断
/home/aistudio/PlantSegmentationDatasets/vinecuttings/images/DSC00149.JPG
/home/aistudio/PlantSegmentationDatasets/vinecuttings/images/DSC00241.JPG
/home/aistudio/PlantSegmentationDatasets/vinecuttings/images/DSC00248.JPG
/home/aistudio/PlantSegmentationDatasets/vinecuttings/images/DSC00214.JPG
/home/aistudio/PlantSegmentationDatasets/vinecuttings/images/DSC00200.JPG
[['/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_SpurredAnoda_0026.JPG', '/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_SpurredAnoda_035.JPG'], [], ['/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0035-YuzhenLu(C).png', '/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0021-YuzhenLu(B).png', '/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0031-YuzhenLu.png', '/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0035-YuzhenLu(A).png', '/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0017-YuzhenLu(B).png', '/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0042-YuzhenLu.png', '/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_Nikon
/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_SpurredAnoda_0026.JPG
/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_SpurredAnoda_035.JPG
/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0035-YuzhenLu(C).png
/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0021-YuzhenLu(B).png
/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/08192020_NikonD3300_YL_Carpetweed_0031-YuzhenLu.png

下面是完整的代码

# 将in_dirs里每个目录的图片,分别复制到同一个out_dir中,并为它们重新编号
def copy_dir(in_dirs, out_dir):
    !mkdir $out_dir  # 创建文件夹
    for j, in_dir in enumerate(in_dirs):
        ends = ["*.JPG", "*.png", "*.jpg", "*.jpeg"]
        paths = reduce(lambda x, y : x + y, [glob(in_dir + end) for end in ends])
        for i, in_filename in enumerate(paths):
            out_filename = out_dir + str(j) + "_" + str(i) + ".jpg"
            print(out_filename)
            !cp $in_filename $out_filename  # 复制图片
dir_1 = "/home/aistudio/PlantSegmentationDatasets/vinecuttings/images/" 
dir_2 = "/home/aistudio/PlantSegmentationDatasets/weeds/weed50images/"
out_dir = "/home/aistudio/data/image/"
in_dirs = [dir_1, dir_2]
copy_dir(in_dirs, out_dir)       

更多的应用,就以后在实践中慢慢摸索咯。


相关文章
|
3月前
|
存储 算法 数据处理
Python函数式编程
【10月更文挑战第12天】函数式编程是一种强大的编程范式,它可以帮助我们编写更加简洁、易读、可维护和高效的代码。虽然 Python 不是一种纯粹的函数式编程语言,但它提供了许多支持函数式编程的特性和功能。通过深入了解和掌握函数式编程的概念和技巧,我们可以在 Python 编程中更好地应用函数式编程的理念,提高我们的编程水平和代码质量。
21 2
|
3月前
|
搜索推荐 Python
Leecode 101刷题笔记之第五章:和你一起你轻松刷题(Python)
这篇文章是关于LeetCode第101章的刷题笔记,涵盖了多种排序算法的Python实现和两个中等难度的编程练习题的解法。
30 3
|
3月前
|
存储 开发工具 Python
【Python项目】外星人入侵项目笔记
【Python项目】外星人入侵项目笔记
49 3
|
3月前
|
存储 Python
【免费分享编程笔记】Python学习笔记(二)
【免费分享编程笔记】Python学习笔记(二)
49 0
【免费分享编程笔记】Python学习笔记(二)
|
4月前
|
Python
Python函数式编程-Filter
Python函数式编程-Filter
|
3月前
|
算法 C++ Python
Leecode 101刷题笔记之第四章:和你一起你轻松刷题(Python)
这篇博客是关于LeetCode上使用Python语言解决二分查找问题的刷题笔记,涵盖了从基础到进阶难度的多个题目及其解法。
22 0
|
3月前
|
算法 C++ Python
Leecode 101刷题笔记之第三章:和你一起你轻松刷题(Python)
本文是关于LeetCode算法题的刷题笔记,主要介绍了使用双指针技术解决的一系列算法问题,包括Two Sum II、Merge Sorted Array、Linked List Cycle II等,并提供了详细的题解和Python代码实现。
18 0
|
3月前
|
算法 C++ 索引
Leecode 101刷题笔记之第二章:和你一起你轻松刷题(Python)
本文是关于LeetCode 101刷题笔记的第二章,主要介绍了使用Python解决贪心算法题目的方法和实例。
16 0
|
3月前
|
并行计算 Python
Python错误笔记(一):CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up env
这篇文章讨论了CUDA初始化时出现的未知错误及其解决方案,包括重启系统和安装nvidia-modprobe。
274 0
|
3月前
|
索引 Python
【免费分享编程笔记】Python学习笔记(一)
【免费分享编程笔记】Python学习笔记(一)
47 0