垃圾分类模型训练部署教程,基于MaixHub和MaixPy-k210(3)

简介: 在开发板上运行模型1、烧录模型文件到板子使用kflash_gui工具,可以完成这个任务。

垃圾分类模型训练部署教程,基于MaixHub和MaixPy-k210(2):https://developer.aliyun.com/article/1407167

在开发板上运行模型

1、烧录模型文件到板子

使用kflash_gui工具,可以完成这个任务。

打开kflash_gui,使用Type-c数据线连接开发板和电脑,然后将.kmodel文件烧录到板子上。我板子上留给模型的烧录地址是0x300000。


烧录到小于这个值的地址,可能会覆盖掉固件。问题也不大,重新刷固件就好(下载固件,然后用kflash_gui烧录到0x000000地址)。

cf9857c116964244afbd240d82f1e8d4.png

.kmodel模型文件上传到板子上后,运行模型可以有两种方式:

  • 通过MaixPy IDE中运行,需要板子连接电脑使用IDE
  • 直接在板子上运行,给板子通电就可以

2、通过IDE运行模型

我们将使用MaxiPy IDE工具完成这个任务。

  • 参考:MaixPy安装教程

打开MaixPy IDE,保证板子连着电脑,然后在IDE中点击左下角的连接按钮(绿色),选择串口,连接成功后按钮会由绿色变成红色

  • 选择串口:如果不知道选哪个,就都试试叭。

58be3d3c4db04e3da4ebfcc9b4616890.png

然后在IDE中打开我们下载的main.py文件,点击左下角的播放按钮,即可开始运行。

8d1b49fcc0f144fe999c98908957a6ef.png

MaixHub给你的main.py文件或许不能直接运行,下面的代码可能需要改一下,因为你的模型是烧录在板子的指定地址的。

只需要用上面那行注释掉的代码代替下面的代码。

56ce0100531e4062bee11e9aa09e4706.png

修改如下:

if __name__ == "__main__":
    try:
        main(labels=labels, model_addr=0x300000)
    except Exception as e:
        sys.print_exception(e)
        lcd_show_except(e)
    finally:
        gc.collect()

如果一切顺利的话,开始体验你的模型吧!祝你好运

image.png

3、上传main.py文件到板子(直接板上运行)

上传main.py文件到板子后,你可以通过两种途径查看模型的运行效果:

  • 串口终端(还是要连电脑)
  • 板子的屏幕配件(只需给板子通电)

和烧录类似,都是把文件传到板子。但烧录是直接从指定的地址开始,写入二进制文件;而接下来的文件,是上传后交给板子上的文件系统管理的。

打开MaixPy IDE,将IDE连接板子(左下角的连接按钮),连接成功后,在工具栏选择发送文件到开发板即可,选择main.py文件上传。

c2d33542d7dd4d9492e2f72041d44b2e.png

接下来演示一下通过串口终端的运行方式。(因为我板子没有屏幕配件?)

  • 虽然和IDE左下角的播放按钮运行一样,需要连接电脑。但串口终端还是有它的优势:
  • 占用板子内存更少
  • 出错时可能显示更多的错误信息

IDE需处于断开连接状态,否则会和串口终端的连接冲突

然后在工具栏,选择打开终端串行端口

       383cd89c04f1476ea15de64ca6d52ec1.png                    99%              


我的串口终端并不能显示摄像头拍摄到的图像(不知是否正常现象),所以我选择修改代码将运行结果打印出来。

ca13555c85ff4077a768911c77ae3159.png

结束

写得有点累,不知道对你有没有帮助,感谢阅读!

到此为止。


相关文章
|
1月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
1月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
1月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
129 1
|
3月前
|
机器学习/深度学习 算法 数据挖掘
从菜鸟到大师:Scikit-learn库实战教程,模型训练、评估、选择一网打尽!
【9月更文挑战第13天】在数据科学与机器学习领域,Scikit-learn是不可或缺的工具。本文通过问答形式,指导初学者从零开始使用Scikit-learn进行模型训练、评估与选择。首先介绍了如何安装库、预处理数据并训练模型;接着展示了如何利用多种评估指标确保模型性能;最后通过GridSearchCV演示了系统化的参数调优方法。通过这些实战技巧,帮助读者逐步成长为熟练的数据科学家。
140 3
|
4月前
|
监控 数据安全/隐私保护 异构计算
借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
【8月更文挑战第8天】借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
107 1
|
4月前
|
机器学习/深度学习 数据采集 人工智能
揭秘大型机器学习模型背后的秘密:如何在技术深度与广度之间找到完美平衡点,探索那些鲜为人知的设计、训练与部署技巧,让你的作品脱颖而出!
【8月更文挑战第21天】大型机器学习模型是人工智能的关键方向,借助不断增强的计算力和海量数据,已实现在学术与产业上的重大突破。本文深入探讨大型模型从设计到部署的全过程,涉及数据预处理、模型架构(如Transformer)、训练技巧及模型压缩技术,旨在面对挑战时提供解决方案,促进AI技术的实用化进程。
86 1
|
4月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习】klearn基础教程
scikit-learn(通常缩写为sklearn)是一个用于Python编程语言的强大机器学习库。它提供了各种分类、回归、聚类算法,以及数据预处理、降维和模型评估的工具。以下是sklearn的基础教程,帮助你开始使用它
31 3
|
4月前
|
机器学习/深度学习 监控 API
基于云计算的机器学习模型部署与优化
【8月更文第17天】随着云计算技术的发展,越来越多的数据科学家和工程师开始使用云平台来部署和优化机器学习模型。本文将介绍如何在主要的云计算平台上部署机器学习模型,并讨论模型优化策略,如模型压缩、超参数调优以及分布式训练。
846 2
|
4月前
|
机器学习/深度学习 JSON API
【Python奇迹】FastAPI框架大显神通:一键部署机器学习模型,让数据预测飞跃至Web舞台,震撼开启智能服务新纪元!
【8月更文挑战第16天】在数据驱动的时代,高效部署机器学习模型至关重要。FastAPI凭借其高性能与灵活性,成为搭建模型API的理想选择。本文详述了从环境准备、模型训练到使用FastAPI部署的全过程。首先,确保安装了Python及相关库(fastapi、uvicorn、scikit-learn)。接着,以线性回归为例,构建了一个预测房价的模型。通过定义FastAPI端点,实现了基于房屋大小预测价格的功能,并介绍了如何运行服务器及测试API。最终,用户可通过HTTP请求获取预测结果,极大地提升了模型的实用性和集成性。
297 1
|
4月前
|
机器学习/深度学习 人工智能 关系型数据库
【机器学习】Qwen2大模型原理、训练及推理部署实战
【机器学习】Qwen2大模型原理、训练及推理部署实战
781 0
【机器学习】Qwen2大模型原理、训练及推理部署实战