顺序表应用1:多余元素删除之移位算法

简介: 顺序表应用1:多余元素删除之移位算法

顺序表应用1:多余元素删除之移位算法

Time Limit: 1000 ms Memory Limit: 650 KiB

SubmitStatistic

Problem Description

一个长度不超过10000数据的顺序表,可能存在着一些值相同的“多余”数据元素(类型为整型),编写一个程序将“多余”的数据元素从顺序表中删除,使该表由一个“非纯表”(值相同的元素在表中可能有多个)变成一个“纯表”(值相同的元素在表中只保留第一个)。

要求:

      1、必须先定义线性表的结构与操作函数,在主函数中借助该定义与操作函数调用实现问题功能;

      2、本题的目标是熟悉顺序表的移位算法,因此题目必须要用元素的移位实现删除;

Input

第一行输入整数n,代表下面有n行输入;

之后输入n行,每行先输入整数m,之后输入m个数据,代表对应顺序表的每个元素。

Output

输出有n行,为每个顺序表删除多余元素后的结果

Sample Input

4
5 6 9 6 8 9
3 5 5 5
5 9 8 7 6 5
10 1 2 3 4 5 5 4 2 1 3

Sample Output

6 9 8
5
9 8 7 6 5
1 2 3 4 5

Hint

 

Source

#include <stdio.h>
#include <stdlib.h>
typedef struct node
{
    int data[100010];
    int last;
} ST;
void creat(ST *head)
{
    int i;
    for(i = 0; i < head->last; i++)
    {
        scanf("%d", &head->data[i]);
    }
}
void delet(ST *head, ST *tail)
{
    int i, num, j;
    num = 0;
    for(i = 0; i < head->last; i++)
    {
        int flag = 0;
        for(j = 0; j < num; j++)
        {
            if(head->data[i] == tail->data[j])
            {
                flag = 1;
                break;
            }
        }
        if(flag == 0)
        {
            tail->data[num] = head->data[i];
            num++;
        }
    }
    tail->last = num;
    for(i = 0; i < num; i++)
    {
        if(i == num - 1)
        {
            printf("%d\n", tail->data[i]);
        }
        else
        {
            printf("%d ", tail->data[i]);
        }
    }
}
int main()
{
    int t;
    ST *head, *tail;
    scanf("%d", &t);
    while(t--)
    {
        head = (ST *)malloc(sizeof(ST));
        tail = (ST *)malloc(sizeof(ST));
        scanf("%d", &head->last);
        creat(head);
        delet(head,tail);
    }
    return 0;
}

 


相关文章
|
17天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
61 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
17天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
52 0
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
56 1
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
72 1
|
5天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
18天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
153 80
|
6天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
6天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
4天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
3天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。