基于二维小波变换的散斑相位奇异构造算法matlab仿真

简介: 基于二维小波变换的散斑相位奇异构造算法matlab仿真

1.算法运行效果图预览

df105f4f4de1b748c558586d9931967e_82780907_202312262214130007523438_Expires=1703600653&Signature=80KfdgBGIjTtCrDDCSnz2btcTS8%3D&domain=8.jpeg

   图(1)表示散斑原图像,(2)表示对(1)图像进行x轴方向的极化分析的小波相位图,呈周期的水平条纹,(3)表示对(1)图像进行y轴方向的极化分析的小波相位图,呈周期的竖直条纹。

c58055c5c0e0339aaa76a04cbeb0ad7b_82780907_202312262214230021716349_Expires=1703600663&Signature=vPrbnmsdL4%2BNgaiKjpbjJocFuHA%3D&domain=8.jpeg

    表示相位奇异点图的构造过程,其中(1)表示从上图(2)中提取的实部零值线,(2)表示从上图(3)中提取的虚部零值线,(3)表示(1)和(2)两幅图重合后的图像。

2.算法运行软件版本
matlab2022a

3.算法理论概述
面内微位移测量是力学测量中的重要分支,可应用到工程在线检测、精密设备加工、细胞生物测定等各种不同的领域,面内微位移测量技术水平的高低直接影响着各个领域技术水平的发展。散斑是光学中的一种普遍现象,采用散斑图像进行面内微位移测量具有设备简单、非接触等优点,在面内微位移测量中发挥着重要的作用。散斑图像是由于光的干涉和衍射效应在物体表面形成的随机颗粒状纹理。这些散斑图像通常包含大量的噪声和畸变,对于许多图像处理任务来说是一个挑战。基于二维小波变换的散斑相位奇异构造算法利用小波变换的优良特性,对散斑图像进行多尺度分解,从而提取出图像中的相位奇异信息。

   二维小波变换是一种有效的图像分析工具,它能够将图像分解为不同的频带,从而在不同的尺度上分析图像的特征。通过小波变换,可以将散斑图像分解为一系列具有不同空间尺度和方向性的子带,这些子带反映了图像在不同尺度上的特征。

   采用二维方向小波变换构造新型的、网格均匀的网状相位奇异点图,提出了初步位移和精确位移两步测量的新方法,由初步位移和匹配最邻近奇异点对间的位移计算待测物体的精确位移。基于二维小波变换的散斑相位奇异构造算法的实现过程如下:

对输入的散斑图像进行二维小波变换,得到不同尺度和方向上的小波系数。
分析小波系数,提取出相位奇异信息。这可以通过计算相位梯度、相位跃变等方法来实现。
根据提取出的相位奇异信息,构造出散斑图像的相位奇异图。这个图反映了图像中重要特征的位置和形状。
对构造出的相位奇异图进行后处理,例如滤波、增强等,以提高图像的质量和可视化效果。

4.部分核心程序
```movex = 14;
movey = 4;
es = 6;
k0 = 4;
a = 20;

I0 = imresize(double(rgb2gray(imread('1.jpg'))),[130,130]);
[R,C] = size(I0);

if movex == 0;
I0 = I0;
else
I0 = [I0(:,movex+1:end),I0(:,1:movex)];
I0 = [I0(movey+1:end,:);I0(1:movey,:)];
end

figure;
subplot(131);
imshow(I0,[]);
title('散斑原图像');
axis square;

%x轴方向的极化分析的小波变换相位图计算
Fx = func_fai_base(I0,movex,movey,es,k0,a,'x');
subplot(132);
imshow(Fx,[]);
title('x轴极化分析的小波变换相位图');
axis square;
%y轴方向的极化分析的小波变换相位图计算
Fy = func_fai_base(I0,movex,movey,es,k0,a,'y');
subplot(133);
imshow(Fy,[]);
title('y轴极化分析的小波变换相位图');
axis square;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F2x = func_findzeros(Fx,'x');
figure;
subplot(131);
imshow(F2x,[]);
title('实部零值线');
F2y = func_findzeros(Fy,'y');
subplot(132);
imshow(F2y,[]);
title('虚部零值线');
%重叠
Fxy = func_chongdie(F2x,F2y);
subplot(133);
imshow(Fxy,[]);
title('重合,交点即相位奇异点');

```

相关文章
|
7天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
7天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
216 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
105 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
7月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
7月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)