百度2024校招机器学习、数据挖掘、自然语言处理方向面试经历

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 百度2024校招机器学习、数据挖掘、自然语言处理方向面试经历

  本文介绍2024届秋招中,百度机器学习/数据挖掘/自然语言处理工程师岗位一面的面试基本情况、提问问题、代码题目等。

  8月初参与了百度提前批机器学习/数据挖掘/自然语言处理工程师岗位面试,所在部门是搜索方向的。一面结束之后就知道凉了,分享一下一面凉经。

  其中,感觉提问环节会问得很细致,而且面试官会根据你前一个问题的回答,来进一步追问,考察对机器学习、深度学习算法原理的细致理解。面试官很和蔼,从整个面试过程中收获到了很多关于机器学习算法的新的理解。

  这也是秋招的第一次面试,也确实感受到和实习生面试比起来,秋招面试更加注重对代码、算法基本原理、底层的理解(当然这个也要看你具体报的工作岗位方向);同时一定要刷题——这次面试的时候面试官也一直强调,准备秋招的面试时,一定注意刷题的积累,这个是绝对不能马虎的。

面试情况

  • 下午15:00开始,持续45分钟左右。
  • 线上视频面试,1位面试官,部门领导;面试官很和蔼。
  • 首先要求做自我介绍,随后提问25分钟,算法题目2道、20分钟。

提问问题

  • 在暑期实习做什么的,都参与了哪些具体的工作,是不是主要偏向开发而不是算法?
  • 目前对NLP接触多吗,主要接触深度学习的哪些领域,用得比较多的模型有哪些?
  • 机器学习接触过哪些,用过哪些模型?
  • 有没有接触过大型的深度学习项目,具体做了些什么,过程中具体用的什么模型,RNN还是DNN
  • 硕士毕业的大论文和小论文做什么的,进展如何,什么时候毕业?
  • 详细介绍一下你的研究生毕业项目中,深度学习的内容,到底是做什么的,输入数据和输出数据是怎么样的,项目背景到底是怎么样的,是不是就是回归分析、没有分类分析,用的损失函数是什么?
  • 为什么你的研究生项目中,RNN效果不如DNN效果,说说你的想法?
  • 为什么要预测遥感影像数据,有什么应用的价值,如何来验证?
  • 既然已经有了其他卫星数据,你们还要预测另一个数据?
  • 你知道我们部门是做什么的吗?对NLP领域了解如何?
  • 卷积神经网络是否有用过,了解理论原理吗?
  • 有没有做过分类任务,用过哪些算法来做的,用的什么语言来实现?
  • 说一说随机森林的理论原理,如何判断每一个节点对应结果的优劣?
  • Dropout会让神经元随机的失效吗?如果同样的数据,在模型确定之后代入进去,Dropout还会随机使得神经元失效吗,得到的结果还会变化吗?神经网络的模型结构一旦确定,Dropout是不是就不改变了?
  • 讲一讲BatchNorm的原理,它有什么作用?
  • 过拟合是什么意思,为什么会出现过拟合,讲一讲它出现的一些可能原因?
  • 数据集中在一个范围上,会不会让神经网络过拟合?
  • 如何缓解过拟合情况,Dropout是如何缓解过拟合的?
  • CNN神经网络如何缓解过拟合?
  • 可不可以通过调整损失函数来缓解过拟合,以及L1L2正则是否可以缓解?
  • L1L2正则是如何缓解过拟合的?

算法题目

  • C++ 找出最长连续序列。
  • C++ 括号匹配。

面试结束提问

  • 目前深度学习是不是主要还是文字处理比较主流,比如NLP这一类算法?

反馈情况

  • 大概几天后,官网显示,流程结束。

欢迎关注:疯狂学习GIS

相关文章
|
1月前
|
算法 前端开发 Java
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
这篇文章总结了单链表的常见面试题,并提供了详细的问题分析、思路分析以及Java代码实现,包括求单链表中有效节点的个数、查找单链表中的倒数第k个节点、单链表的反转以及从尾到头打印单链表等题目。
32 1
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
|
24天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
3月前
|
机器学习/深度学习 存储 人工智能
【数据挖掘】2022年2023届秋招知能科技公司机器学习算法工程师 笔试题
本文是关于2022-2023年知能科技公司机器学习算法工程师岗位的秋招笔试题,包括简答题和编程题,简答题涉及神经网络防止过拟合的方法、ReLU激活函数的使用原因以及条件概率计算,编程题包括路径行走时间计算和两车相向而行相遇时间问题。
74 2
【数据挖掘】2022年2023届秋招知能科技公司机器学习算法工程师 笔试题
|
3月前
|
机器学习/深度学习 人工智能 算法
【数据挖掘】2022年2023届秋招奇虎360机器学习算法工程师 笔试题
本文提供了奇虎360公司2022年秋招机器学习算法工程师岗位的笔试题内容,包括选择题和编程题,涉及概率统计、数据结构、机器学习、计算机组成原理等多个领域。
92 5
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】2022年2023届秋招宏瓴科技公司机器学习算法工程师 笔试题
关于宏瓴科技有限公司2022-2023年秋招机器学习算法工程师岗位的笔试题目及作者个人对部分题目的解答尝试,涉及贝叶斯误差和贝叶斯最优分类器的概念、贝叶斯误差的重要性和估算方法,以及如何有效利用训练集和测试集进行深度学习模型训练的数据集划分策略。
56 4
|
3月前
|
机器学习/深度学习 算法 数据中心
【机器学习】面试问答:PCA算法介绍?PCA算法过程?PCA为什么要中心化处理?PCA为什么要做正交变化?PCA与线性判别分析LDA降维的区别?
本文介绍了主成分分析(PCA)算法,包括PCA的基本概念、算法过程、中心化处理的必要性、正交变换的目的,以及PCA与线性判别分析(LDA)在降维上的区别。
88 4
|
3月前
|
机器学习/深度学习 算法 Python
【机器学习】面试问答:决策树如何进行剪枝?剪枝的方法有哪些?
文章讨论了决策树的剪枝技术,包括预剪枝和后剪枝的概念、方法以及各自的优缺点。
58 2
|
3月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
72 3
|
3月前
|
机器学习/深度学习
【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
135 2