Python大数据之PySpark(三)使用Python语言开发Spark程序代码

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: Python大数据之PySpark(三)使用Python语言开发Spark程序代码

使用Python语言开发Spark程序代码

  • Spark Standalone的PySpark的搭建----bin/pyspark --master spark://node1:7077
  • Spark StandaloneHA的搭建—Master的单点故障(node1,node2),zk的leader选举机制,1-2min还原
  • 【scala版本的交互式界面】bin/spark-shell --master xxx
  • 【python版本交互式界面】bin/pyspark --master xxx
  • 【提交任务】bin/spark-submit --master xxxx

【学会配置】Windows的PySpark环境配置

  • 1-安装Andaconda
  • 2-在Anaconda Prompt中安装PySpark
  • 3-执行安装
  • 4-使用Pycharm构建Project(准备工作)
  • 需要配置anaconda的环境变量–参考课件
  • 需要配置hadoop3.3.0的安装包,里面有winutils,防止pycharm写代码的过程中报错

补充:

PyCharm构建Python project

  • 项目规划
  • 项目名称:Bigdata25-pyspark_3.1.2
  • 模块名称:PySpark-SparkBase_3.1.2,PySpark-SparkCore_3.1.2,PySpark-SparkSQL_3.1.2
  • 文件夹:
  • main pyspark的代码
  • data 数据文件
  • config 配置文件
  • test 常见python测试代码放在test中

应用入口:SparkContext

WordCount代码实战

  • 需求:给你一个文本文件,统计出单词的数量
  • 算子:rdd的api的操作,就是算子,flatMap扁平化算子,map转换算子
  • Transformation算子
  • Action算子
  • 步骤:
  • 1-首先创建SparkContext上下文环境
    2-从外部文件数据源读取数据
    3-执行flatmap执行扁平化操作
    4-执行map转化操作,得到(word,1)
    5-reduceByKey将相同Key的Value数据累加操作
    6-将结果输出到文件系统或打印
  • 代码:
# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf,SparkContext
if __name__ == '__main__':
   # 1 - 首先创建SparkContext上下文环境
   conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
   sc = SparkContext(conf=conf)
   sc.setLogLevel("WARN")#日志输出级别
   # 2 - 从外部文件数据源读取数据
   fileRDD = sc.textFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\words.txt")
   # print(type(fileRDD))#<class 'pyspark.rdd.RDD'>
   # all the data is loaded into the driver's memory.
   # print(fileRDD.collect())
   # ['hello you Spark Flink', 'hello me hello she Spark']
   # 3 - 执行flatmap执行扁平化操作
   flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
   # print(type(flat_mapRDD))
   # print(flat_mapRDD.collect())
   #['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
   # # 4 - 执行map转化操作,得到(word, 1)
   rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
   # print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
   # print(rdd_mapRDD.collect())
   # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
   # 5 - reduceByKey将相同Key的Value数据累加操作
   resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
   # print(type(resultRDD))
   # print(resultRDD.collect())
   # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
   # 6 - 将结果输出到文件系统或打印
   resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
   # 7-停止SparkContext
   sc.stop()#Shut down the SparkContext.

  • 总结:

TopK需求

需求:[(‘Spark’, 2), (‘Flink’, 1), (‘hello’, 3), (‘you’, 1), (‘me’, 1), (‘she’, 1)]

排序:[ (‘hello’, 3),(‘Spark’, 2),]

共识:Spark核心或灵魂是rdd,spark的所有操作都是基于rdd的操作

代码:

# -*- coding: utf-8 -*-
# Program function: 针对于value单词统计计数的排序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
# 1 - 首先创建SparkContext上下文环境
conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
sc = SparkContext(conf=conf)
sc.setLogLevel("WARN")  # 日志输出级别
# 2 - 从外部文件数据源读取数据
fileRDD = sc.textFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\words.txt")
# print(type(fileRDD))#<class 'pyspark.rdd.RDD'>
# all the data is loaded into the driver's memory.
# print(fileRDD.collect())
# ['hello you Spark Flink', 'hello me hello she Spark']
# 3 - 执行flatmap执行扁平化操作
flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
# print(type(flat_mapRDD))
# print(flat_mapRDD.collect())
# ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
# # 4 - 执行map转化操作,得到(word, 1)
rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
# print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
# print(rdd_mapRDD.collect())
# [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
# 5 - reduceByKey将相同Key的Value数据累加操作
resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
# print(type(resultRDD))
print(resultRDD.collect())
# [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
# 6 针对于value单词统计计数的排序
print("==============================sortBY=============================")
print(resultRDD.sortBy(lambda x: x[1], ascending=False).take(3))
# [('hello', 3), ('Spark', 2), ('Flink', 1)]
print(resultRDD.sortBy(lambda x: x[1], ascending=False).top(3, lambda x: x[1]))
print("==============================sortBykey=============================")
print(resultRDD.map(lambda x: (x[1], x[0])).collect())
# [(2, 'Spark'), (1, 'Flink'), (3, 'hello'), (1, 'you'), (1, 'me'), (1, 'she')]
print(resultRDD.map(lambda x: (x[1], x[0])).sortByKey(False).take(3))
#[(3, 'hello'), (2, 'Spark'), (1, 'Flink')]
# 7-停止SparkContext
sc.stop()  # Shut down the SparkContext.
  • sortBy
  • sortByKey操作

从HDFS读取数据

# -*- coding: utf-8 -*-
# Program function: 从HDFS读取文件
from pyspark import SparkConf, SparkContext
import time
if __name__ == '__main__':
 # 1 - 首先创建SparkContext上下文环境
 conf = SparkConf().setAppName("FromHDFS").setMaster("local[*]")
 sc = SparkContext(conf=conf)
 sc.setLogLevel("WARN")  # 日志输出级别
 # 2 - 从外部文件数据源读取数据
 fileRDD = sc.textFile("hdfs://node1:9820/pydata/input/hello.txt")
 # ['hello you Spark Flink', 'hello me hello she Spark']
 # 3 - 执行flatmap执行扁平化操作
 flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
 # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
 # # 4 - 执行map转化操作,得到(word, 1)
 rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
 # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
 # 5 - reduceByKey将相同Key的Value数据累加操作
 resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
 # print(type(resultRDD))
 print(resultRDD.collect())
 # 休息几分钟
 time.sleep(600)
 # 7-停止SparkContext
 sc.stop()  # Shut down the SparkContext.

         

         

提交代码到集群执行

  • 关键:sys.argv[1],
  • 代码:
# -*- coding: utf-8 -*-
# Program function: 提交任务执行
import sys
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
   # 1 - 首先创建SparkContext上下文环境
   conf = SparkConf().setAppName("FromHDFS").setMaster("local[*]")
   sc = SparkContext(conf=conf)
   sc.setLogLevel("WARN")  # 日志输出级别
   # 2 - 从外部文件数据源读取数据
   # hdfs://node1:9820/pydata/input/hello.txt
   fileRDD = sc.textFile(sys.argv[1])
   # ['hello you Spark Flink', 'hello me hello she Spark']
   # 3 - 执行flatmap执行扁平化操作
   flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
   # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
   # # 4 - 执行map转化操作,得到(word, 1)
   rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
   # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
   # 5 - reduceByKey将相同Key的Value数据累加操作
   resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
   # print(type(resultRDD))
   resultRDD.saveAsTextFile(sys.argv[2])
   # 7-停止SparkContext
   sc.stop()  # Shut down the SparkContext.
  • 结果:

[掌握-扩展阅读]远程PySpark环境配置

  • 需求:需要将PyCharm连接服务器,同步本地写的代码到服务器上,使用服务器上的Python解析器执行
  • 步骤:
  • 1-准备PyCharm的连接

  • 2-需要了解服务器的地址,端口号,用户名,密码


  • 设置自动的上传,如果不太好使,重启pycharm

  • 3-pycharm读取的文件都需要上传到linux中,复制相对路径

  • 4-执行代码在远程服务器上
  • 5-执行代码

# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
 # 1 - 首先创建SparkContext上下文环境
 conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
 sc = SparkContext(conf=conf)
 sc.setLogLevel("WARN")  # 日志输出级别
 # 2 - 从外部文件数据源读取数据
 fileRDD = sc.textFile("/export/data/pyspark_workspace/PySpark-SparkBase_3.1.2/data/words.txt")
 # fileRDD = sc.parallelize(["hello you", "hello me", "hello spark"])
 # 3 - 执行flatmap执行扁平化操作
 flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
 # print(type(flat_mapRDD))
 # print(flat_mapRDD.collect())
 # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
 # # 4 - 执行map转化操作,得到(word, 1)
 rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
 # print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
 # print(rdd_mapRDD.collect())
 # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
 # 5 - reduceByKey将相同Key的Value数据累加操作
 resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
 # print(type(resultRDD))
 print(resultRDD.collect())
 # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
 # 6 - 将结果输出到文件系统或打印
 # resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
 # 7-停止SparkContext
 sc.stop()  # Shut down the SparkContext.
  • 切记忘记上传python的文件,直接执行
  • 注意1:自动上传设置

  • 注意2:增加如何使用standalone和HA的方式提交代码执行
  • 但是需要注意,尽可能使用hdfs的文件,不要使用单机版本的文件,因为standalone是集群模式
# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
>from pyspark import SparkConf, SparkContext
>
>if __name__ == '__main__':
>
># 1 - 首先创建SparkContext上下文环境
>
>conf = SparkConf().setAppName("FirstSpark").setMaster("spark://node1:7077,node2:7077")
>sc = SparkContext(conf=conf)
>sc.setLogLevel("WARN")  # 日志输出级别
>
># 2 - 从外部文件数据源读取数据
>
>fileRDD = sc.textFile("hdfs://node1:9820/pydata/input/hello.txt")
>
># fileRDD = sc.parallelize(["hello you", "hello me", "hello spark"])
>
># 3 - 执行flatmap执行扁平化操作
>
>flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
>
># print(type(flat_mapRDD))
>
># print(flat_mapRDD.collect())
>
># ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
>
># # 4 - 执行map转化操作,得到(word, 1)
>
>rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
>
># print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
>
># print(rdd_mapRDD.collect())
>
># [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
>
># 5 - reduceByKey将相同Key的Value数据累加操作
>
>resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
>
># print(type(resultRDD))
>
>print(resultRDD.collect())
>
># [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
>
># 6 - 将结果输出到文件系统或打印
>
># resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
>
># 7-停止SparkContext
>
>sc.stop()  # Shut down the SparkContext.

总结

  • 函数式编程
#Python中的函数式编程
#1-map(func, *iterables) --> map object
def fun(x):
    return x*x
#x=[1,2,3,4,5] y=map(fun,[1,2,3,4,5]) #[1, 4, 9, 16, 25]
print(list(map(fun, [1, 2, 3, 4, 5])))
#2-lambda 匿名函数  java: x=>x*x 表达式  Scala:x->x*x
g=lambda x:x*x
print(g(10))
print(list(map(lambda x:x*x, [1, 2, 3, 4, 5])))
def add(x,y):
    return x+y
print(list(map(add, range(5), range(5, 10))))
print(list(map(lambda x,y:x+y,range(5),range(5,10))))
#3- [add(x,y) for x,y in zip(range(5),range(5,10))]
# print(list(zip([1, 2, 3], [4, 5, 6])))#[1,4],[2,5]
# print(list(zip([1, 2, 3], [4, 5, 6,7])))#[1,4],[2,5]
# print(list(zip([1, 2, 3,6], [4, 5, 6])))#[1,4],[2,5]
# 语法 lambda表达式语言:【lambda 变量:表达式】
# 列表表达式 [表达式 for 变量 in 可迭代的序列中 if 条件]
print([add(x, y) for x, y in zip(range(5), range(5))])
#[0, 2, 4, 6, 8]
#3-reduce
from functools import  reduce
# ((((1+2)+3)+4)+5)
print(reduce(lambda x, y: x + y, [1, 2, 3, 4, 5]))
# 4-filter
seq1=['foo','x41','?1','***']
def func(x):
    #Return True if the string is an alpha-numeric string
    return x.isalnum()
print(list(filter(func,seq1))) #返回 filter 对象
# sorted()
# 最后我们可以看到,函数式编程有如下好处:
# 1)代码更简单了。
# 2)数据集,操作,返回值都放到了一起。
# 3)你在读代码的时候,没有了循环体,于是就可以少了些临时变量,以及变量倒来倒去逻辑。
# 4)你的代码变成了在描述你要干什么,而不是怎么去干。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
6天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
5天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
13 1
|
6天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
8天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
19 2
|
18天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
52 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
60 0
|
1月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
40 0
|
1月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
82 0
|
19天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
47 6