Python大数据之PySpark(三)使用Python语言开发Spark程序代码

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Python大数据之PySpark(三)使用Python语言开发Spark程序代码

使用Python语言开发Spark程序代码

  • Spark Standalone的PySpark的搭建----bin/pyspark --master spark://node1:7077
  • Spark StandaloneHA的搭建—Master的单点故障(node1,node2),zk的leader选举机制,1-2min还原
  • 【scala版本的交互式界面】bin/spark-shell --master xxx
  • 【python版本交互式界面】bin/pyspark --master xxx
  • 【提交任务】bin/spark-submit --master xxxx

【学会配置】Windows的PySpark环境配置

  • 1-安装Andaconda
  • 2-在Anaconda Prompt中安装PySpark
  • 3-执行安装
  • 4-使用Pycharm构建Project(准备工作)
  • 需要配置anaconda的环境变量–参考课件
  • 需要配置hadoop3.3.0的安装包,里面有winutils,防止pycharm写代码的过程中报错

补充:

PyCharm构建Python project

  • 项目规划
  • 项目名称:Bigdata25-pyspark_3.1.2
  • 模块名称:PySpark-SparkBase_3.1.2,PySpark-SparkCore_3.1.2,PySpark-SparkSQL_3.1.2
  • 文件夹:
  • main pyspark的代码
  • data 数据文件
  • config 配置文件
  • test 常见python测试代码放在test中

应用入口:SparkContext

WordCount代码实战

  • 需求:给你一个文本文件,统计出单词的数量
  • 算子:rdd的api的操作,就是算子,flatMap扁平化算子,map转换算子
  • Transformation算子
  • Action算子
  • 步骤:
  • 1-首先创建SparkContext上下文环境
    2-从外部文件数据源读取数据
    3-执行flatmap执行扁平化操作
    4-执行map转化操作,得到(word,1)
    5-reduceByKey将相同Key的Value数据累加操作
    6-将结果输出到文件系统或打印
  • 代码:
# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf,SparkContext
if __name__ == '__main__':
   # 1 - 首先创建SparkContext上下文环境
   conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
   sc = SparkContext(conf=conf)
   sc.setLogLevel("WARN")#日志输出级别
   # 2 - 从外部文件数据源读取数据
   fileRDD = sc.textFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\words.txt")
   # print(type(fileRDD))#<class 'pyspark.rdd.RDD'>
   # all the data is loaded into the driver's memory.
   # print(fileRDD.collect())
   # ['hello you Spark Flink', 'hello me hello she Spark']
   # 3 - 执行flatmap执行扁平化操作
   flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
   # print(type(flat_mapRDD))
   # print(flat_mapRDD.collect())
   #['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
   # # 4 - 执行map转化操作,得到(word, 1)
   rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
   # print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
   # print(rdd_mapRDD.collect())
   # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
   # 5 - reduceByKey将相同Key的Value数据累加操作
   resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
   # print(type(resultRDD))
   # print(resultRDD.collect())
   # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
   # 6 - 将结果输出到文件系统或打印
   resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
   # 7-停止SparkContext
   sc.stop()#Shut down the SparkContext.

  • 总结:

TopK需求

需求:[(‘Spark’, 2), (‘Flink’, 1), (‘hello’, 3), (‘you’, 1), (‘me’, 1), (‘she’, 1)]

排序:[ (‘hello’, 3),(‘Spark’, 2),]

共识:Spark核心或灵魂是rdd,spark的所有操作都是基于rdd的操作

代码:

# -*- coding: utf-8 -*-
# Program function: 针对于value单词统计计数的排序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
# 1 - 首先创建SparkContext上下文环境
conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
sc = SparkContext(conf=conf)
sc.setLogLevel("WARN")  # 日志输出级别
# 2 - 从外部文件数据源读取数据
fileRDD = sc.textFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\words.txt")
# print(type(fileRDD))#<class 'pyspark.rdd.RDD'>
# all the data is loaded into the driver's memory.
# print(fileRDD.collect())
# ['hello you Spark Flink', 'hello me hello she Spark']
# 3 - 执行flatmap执行扁平化操作
flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
# print(type(flat_mapRDD))
# print(flat_mapRDD.collect())
# ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
# # 4 - 执行map转化操作,得到(word, 1)
rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
# print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
# print(rdd_mapRDD.collect())
# [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
# 5 - reduceByKey将相同Key的Value数据累加操作
resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
# print(type(resultRDD))
print(resultRDD.collect())
# [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
# 6 针对于value单词统计计数的排序
print("==============================sortBY=============================")
print(resultRDD.sortBy(lambda x: x[1], ascending=False).take(3))
# [('hello', 3), ('Spark', 2), ('Flink', 1)]
print(resultRDD.sortBy(lambda x: x[1], ascending=False).top(3, lambda x: x[1]))
print("==============================sortBykey=============================")
print(resultRDD.map(lambda x: (x[1], x[0])).collect())
# [(2, 'Spark'), (1, 'Flink'), (3, 'hello'), (1, 'you'), (1, 'me'), (1, 'she')]
print(resultRDD.map(lambda x: (x[1], x[0])).sortByKey(False).take(3))
#[(3, 'hello'), (2, 'Spark'), (1, 'Flink')]
# 7-停止SparkContext
sc.stop()  # Shut down the SparkContext.
  • sortBy
  • sortByKey操作

从HDFS读取数据

# -*- coding: utf-8 -*-
# Program function: 从HDFS读取文件
from pyspark import SparkConf, SparkContext
import time
if __name__ == '__main__':
 # 1 - 首先创建SparkContext上下文环境
 conf = SparkConf().setAppName("FromHDFS").setMaster("local[*]")
 sc = SparkContext(conf=conf)
 sc.setLogLevel("WARN")  # 日志输出级别
 # 2 - 从外部文件数据源读取数据
 fileRDD = sc.textFile("hdfs://node1:9820/pydata/input/hello.txt")
 # ['hello you Spark Flink', 'hello me hello she Spark']
 # 3 - 执行flatmap执行扁平化操作
 flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
 # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
 # # 4 - 执行map转化操作,得到(word, 1)
 rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
 # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
 # 5 - reduceByKey将相同Key的Value数据累加操作
 resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
 # print(type(resultRDD))
 print(resultRDD.collect())
 # 休息几分钟
 time.sleep(600)
 # 7-停止SparkContext
 sc.stop()  # Shut down the SparkContext.

         

         

提交代码到集群执行

  • 关键:sys.argv[1],
  • 代码:
# -*- coding: utf-8 -*-
# Program function: 提交任务执行
import sys
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
   # 1 - 首先创建SparkContext上下文环境
   conf = SparkConf().setAppName("FromHDFS").setMaster("local[*]")
   sc = SparkContext(conf=conf)
   sc.setLogLevel("WARN")  # 日志输出级别
   # 2 - 从外部文件数据源读取数据
   # hdfs://node1:9820/pydata/input/hello.txt
   fileRDD = sc.textFile(sys.argv[1])
   # ['hello you Spark Flink', 'hello me hello she Spark']
   # 3 - 执行flatmap执行扁平化操作
   flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
   # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
   # # 4 - 执行map转化操作,得到(word, 1)
   rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
   # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
   # 5 - reduceByKey将相同Key的Value数据累加操作
   resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
   # print(type(resultRDD))
   resultRDD.saveAsTextFile(sys.argv[2])
   # 7-停止SparkContext
   sc.stop()  # Shut down the SparkContext.
  • 结果:

[掌握-扩展阅读]远程PySpark环境配置

  • 需求:需要将PyCharm连接服务器,同步本地写的代码到服务器上,使用服务器上的Python解析器执行
  • 步骤:
  • 1-准备PyCharm的连接

  • 2-需要了解服务器的地址,端口号,用户名,密码


  • 设置自动的上传,如果不太好使,重启pycharm

  • 3-pycharm读取的文件都需要上传到linux中,复制相对路径

  • 4-执行代码在远程服务器上
  • 5-执行代码

# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
 # 1 - 首先创建SparkContext上下文环境
 conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
 sc = SparkContext(conf=conf)
 sc.setLogLevel("WARN")  # 日志输出级别
 # 2 - 从外部文件数据源读取数据
 fileRDD = sc.textFile("/export/data/pyspark_workspace/PySpark-SparkBase_3.1.2/data/words.txt")
 # fileRDD = sc.parallelize(["hello you", "hello me", "hello spark"])
 # 3 - 执行flatmap执行扁平化操作
 flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
 # print(type(flat_mapRDD))
 # print(flat_mapRDD.collect())
 # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
 # # 4 - 执行map转化操作,得到(word, 1)
 rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
 # print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
 # print(rdd_mapRDD.collect())
 # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
 # 5 - reduceByKey将相同Key的Value数据累加操作
 resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
 # print(type(resultRDD))
 print(resultRDD.collect())
 # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
 # 6 - 将结果输出到文件系统或打印
 # resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
 # 7-停止SparkContext
 sc.stop()  # Shut down the SparkContext.
  • 切记忘记上传python的文件,直接执行
  • 注意1:自动上传设置

  • 注意2:增加如何使用standalone和HA的方式提交代码执行
  • 但是需要注意,尽可能使用hdfs的文件,不要使用单机版本的文件,因为standalone是集群模式
# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
>from pyspark import SparkConf, SparkContext
>
>if __name__ == '__main__':
>
># 1 - 首先创建SparkContext上下文环境
>
>conf = SparkConf().setAppName("FirstSpark").setMaster("spark://node1:7077,node2:7077")
>sc = SparkContext(conf=conf)
>sc.setLogLevel("WARN")  # 日志输出级别
>
># 2 - 从外部文件数据源读取数据
>
>fileRDD = sc.textFile("hdfs://node1:9820/pydata/input/hello.txt")
>
># fileRDD = sc.parallelize(["hello you", "hello me", "hello spark"])
>
># 3 - 执行flatmap执行扁平化操作
>
>flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
>
># print(type(flat_mapRDD))
>
># print(flat_mapRDD.collect())
>
># ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
>
># # 4 - 执行map转化操作,得到(word, 1)
>
>rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
>
># print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
>
># print(rdd_mapRDD.collect())
>
># [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
>
># 5 - reduceByKey将相同Key的Value数据累加操作
>
>resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
>
># print(type(resultRDD))
>
>print(resultRDD.collect())
>
># [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
>
># 6 - 将结果输出到文件系统或打印
>
># resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
>
># 7-停止SparkContext
>
>sc.stop()  # Shut down the SparkContext.

总结

  • 函数式编程
#Python中的函数式编程
#1-map(func, *iterables) --> map object
def fun(x):
    return x*x
#x=[1,2,3,4,5] y=map(fun,[1,2,3,4,5]) #[1, 4, 9, 16, 25]
print(list(map(fun, [1, 2, 3, 4, 5])))
#2-lambda 匿名函数  java: x=>x*x 表达式  Scala:x->x*x
g=lambda x:x*x
print(g(10))
print(list(map(lambda x:x*x, [1, 2, 3, 4, 5])))
def add(x,y):
    return x+y
print(list(map(add, range(5), range(5, 10))))
print(list(map(lambda x,y:x+y,range(5),range(5,10))))
#3- [add(x,y) for x,y in zip(range(5),range(5,10))]
# print(list(zip([1, 2, 3], [4, 5, 6])))#[1,4],[2,5]
# print(list(zip([1, 2, 3], [4, 5, 6,7])))#[1,4],[2,5]
# print(list(zip([1, 2, 3,6], [4, 5, 6])))#[1,4],[2,5]
# 语法 lambda表达式语言:【lambda 变量:表达式】
# 列表表达式 [表达式 for 变量 in 可迭代的序列中 if 条件]
print([add(x, y) for x, y in zip(range(5), range(5))])
#[0, 2, 4, 6, 8]
#3-reduce
from functools import  reduce
# ((((1+2)+3)+4)+5)
print(reduce(lambda x, y: x + y, [1, 2, 3, 4, 5]))
# 4-filter
seq1=['foo','x41','?1','***']
def func(x):
    #Return True if the string is an alpha-numeric string
    return x.isalnum()
print(list(filter(func,seq1))) #返回 filter 对象
# sorted()
# 最后我们可以看到,函数式编程有如下好处:
# 1)代码更简单了。
# 2)数据集,操作,返回值都放到了一起。
# 3)你在读代码的时候,没有了循环体,于是就可以少了些临时变量,以及变量倒来倒去逻辑。
# 4)你的代码变成了在描述你要干什么,而不是怎么去干。


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
6月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
310 0
|
9月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
404 79
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
872 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
10月前
|
JavaScript 搜索推荐 Android开发
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
398 8
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
|
10月前
|
人工智能 DataWorks 大数据
大数据AI一体化开发再加速:DataWorks 支持GPU类型资源
大数据开发治理平台 DataWorks 的Serverless资源组支持GPU资源类型,以免运维、按需付费、弹性伸缩的Serverless架构,将大数据处理与AI开发能力无缝融合。面向大数据&AI协同开发场景,DataWorks提供了交互式开发和分析工具Notebook。开发者在创建个人开发环境时,可以选择GPU类型的资源作为Notebook运行环境,以支持进行高性能的计算工作。本教程将基于开源多模态大模型Qwen2-VL-2B-Instruct,介绍如何使用 DataWorks Notebook及LLaMA Factory训练框架完成文旅领域大模型的构建。
627 24
|
11月前
|
数据采集 机器学习/深度学习 DataWorks
DataWorks产品评测:大数据开发治理的深度体验
DataWorks产品评测:大数据开发治理的深度体验
458 1
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
545 2
|
3月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
194 14
|
4月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
162 0

推荐镜像

更多