Python大数据之PySpark(三)使用Python语言开发Spark程序代码

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: Python大数据之PySpark(三)使用Python语言开发Spark程序代码

使用Python语言开发Spark程序代码

  • Spark Standalone的PySpark的搭建----bin/pyspark --master spark://node1:7077
  • Spark StandaloneHA的搭建—Master的单点故障(node1,node2),zk的leader选举机制,1-2min还原
  • 【scala版本的交互式界面】bin/spark-shell --master xxx
  • 【python版本交互式界面】bin/pyspark --master xxx
  • 【提交任务】bin/spark-submit --master xxxx

【学会配置】Windows的PySpark环境配置

  • 1-安装Andaconda
  • 2-在Anaconda Prompt中安装PySpark
  • 3-执行安装
  • 4-使用Pycharm构建Project(准备工作)
  • 需要配置anaconda的环境变量–参考课件
  • 需要配置hadoop3.3.0的安装包,里面有winutils,防止pycharm写代码的过程中报错

补充:

PyCharm构建Python project

  • 项目规划
  • 项目名称:Bigdata25-pyspark_3.1.2
  • 模块名称:PySpark-SparkBase_3.1.2,PySpark-SparkCore_3.1.2,PySpark-SparkSQL_3.1.2
  • 文件夹:
  • main pyspark的代码
  • data 数据文件
  • config 配置文件
  • test 常见python测试代码放在test中

应用入口:SparkContext

WordCount代码实战

  • 需求:给你一个文本文件,统计出单词的数量
  • 算子:rdd的api的操作,就是算子,flatMap扁平化算子,map转换算子
  • Transformation算子
  • Action算子
  • 步骤:
  • 1-首先创建SparkContext上下文环境
    2-从外部文件数据源读取数据
    3-执行flatmap执行扁平化操作
    4-执行map转化操作,得到(word,1)
    5-reduceByKey将相同Key的Value数据累加操作
    6-将结果输出到文件系统或打印
  • 代码:
# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf,SparkContext
if __name__ == '__main__':
   # 1 - 首先创建SparkContext上下文环境
   conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
   sc = SparkContext(conf=conf)
   sc.setLogLevel("WARN")#日志输出级别
   # 2 - 从外部文件数据源读取数据
   fileRDD = sc.textFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\words.txt")
   # print(type(fileRDD))#<class 'pyspark.rdd.RDD'>
   # all the data is loaded into the driver's memory.
   # print(fileRDD.collect())
   # ['hello you Spark Flink', 'hello me hello she Spark']
   # 3 - 执行flatmap执行扁平化操作
   flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
   # print(type(flat_mapRDD))
   # print(flat_mapRDD.collect())
   #['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
   # # 4 - 执行map转化操作,得到(word, 1)
   rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
   # print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
   # print(rdd_mapRDD.collect())
   # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
   # 5 - reduceByKey将相同Key的Value数据累加操作
   resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
   # print(type(resultRDD))
   # print(resultRDD.collect())
   # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
   # 6 - 将结果输出到文件系统或打印
   resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
   # 7-停止SparkContext
   sc.stop()#Shut down the SparkContext.

  • 总结:

TopK需求

需求:[(‘Spark’, 2), (‘Flink’, 1), (‘hello’, 3), (‘you’, 1), (‘me’, 1), (‘she’, 1)]

排序:[ (‘hello’, 3),(‘Spark’, 2),]

共识:Spark核心或灵魂是rdd,spark的所有操作都是基于rdd的操作

代码:

# -*- coding: utf-8 -*-
# Program function: 针对于value单词统计计数的排序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
# 1 - 首先创建SparkContext上下文环境
conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
sc = SparkContext(conf=conf)
sc.setLogLevel("WARN")  # 日志输出级别
# 2 - 从外部文件数据源读取数据
fileRDD = sc.textFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\words.txt")
# print(type(fileRDD))#<class 'pyspark.rdd.RDD'>
# all the data is loaded into the driver's memory.
# print(fileRDD.collect())
# ['hello you Spark Flink', 'hello me hello she Spark']
# 3 - 执行flatmap执行扁平化操作
flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
# print(type(flat_mapRDD))
# print(flat_mapRDD.collect())
# ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
# # 4 - 执行map转化操作,得到(word, 1)
rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
# print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
# print(rdd_mapRDD.collect())
# [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
# 5 - reduceByKey将相同Key的Value数据累加操作
resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
# print(type(resultRDD))
print(resultRDD.collect())
# [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
# 6 针对于value单词统计计数的排序
print("==============================sortBY=============================")
print(resultRDD.sortBy(lambda x: x[1], ascending=False).take(3))
# [('hello', 3), ('Spark', 2), ('Flink', 1)]
print(resultRDD.sortBy(lambda x: x[1], ascending=False).top(3, lambda x: x[1]))
print("==============================sortBykey=============================")
print(resultRDD.map(lambda x: (x[1], x[0])).collect())
# [(2, 'Spark'), (1, 'Flink'), (3, 'hello'), (1, 'you'), (1, 'me'), (1, 'she')]
print(resultRDD.map(lambda x: (x[1], x[0])).sortByKey(False).take(3))
#[(3, 'hello'), (2, 'Spark'), (1, 'Flink')]
# 7-停止SparkContext
sc.stop()  # Shut down the SparkContext.
  • sortBy
  • sortByKey操作

从HDFS读取数据

# -*- coding: utf-8 -*-
# Program function: 从HDFS读取文件
from pyspark import SparkConf, SparkContext
import time
if __name__ == '__main__':
 # 1 - 首先创建SparkContext上下文环境
 conf = SparkConf().setAppName("FromHDFS").setMaster("local[*]")
 sc = SparkContext(conf=conf)
 sc.setLogLevel("WARN")  # 日志输出级别
 # 2 - 从外部文件数据源读取数据
 fileRDD = sc.textFile("hdfs://node1:9820/pydata/input/hello.txt")
 # ['hello you Spark Flink', 'hello me hello she Spark']
 # 3 - 执行flatmap执行扁平化操作
 flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
 # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
 # # 4 - 执行map转化操作,得到(word, 1)
 rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
 # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
 # 5 - reduceByKey将相同Key的Value数据累加操作
 resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
 # print(type(resultRDD))
 print(resultRDD.collect())
 # 休息几分钟
 time.sleep(600)
 # 7-停止SparkContext
 sc.stop()  # Shut down the SparkContext.

         

         

提交代码到集群执行

  • 关键:sys.argv[1],
  • 代码:
# -*- coding: utf-8 -*-
# Program function: 提交任务执行
import sys
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
   # 1 - 首先创建SparkContext上下文环境
   conf = SparkConf().setAppName("FromHDFS").setMaster("local[*]")
   sc = SparkContext(conf=conf)
   sc.setLogLevel("WARN")  # 日志输出级别
   # 2 - 从外部文件数据源读取数据
   # hdfs://node1:9820/pydata/input/hello.txt
   fileRDD = sc.textFile(sys.argv[1])
   # ['hello you Spark Flink', 'hello me hello she Spark']
   # 3 - 执行flatmap执行扁平化操作
   flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
   # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
   # # 4 - 执行map转化操作,得到(word, 1)
   rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
   # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
   # 5 - reduceByKey将相同Key的Value数据累加操作
   resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
   # print(type(resultRDD))
   resultRDD.saveAsTextFile(sys.argv[2])
   # 7-停止SparkContext
   sc.stop()  # Shut down the SparkContext.
  • 结果:

[掌握-扩展阅读]远程PySpark环境配置

  • 需求:需要将PyCharm连接服务器,同步本地写的代码到服务器上,使用服务器上的Python解析器执行
  • 步骤:
  • 1-准备PyCharm的连接

  • 2-需要了解服务器的地址,端口号,用户名,密码


  • 设置自动的上传,如果不太好使,重启pycharm

  • 3-pycharm读取的文件都需要上传到linux中,复制相对路径

  • 4-执行代码在远程服务器上
  • 5-执行代码

# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
from pyspark import SparkConf, SparkContext
if __name__ == '__main__':
 # 1 - 首先创建SparkContext上下文环境
 conf = SparkConf().setAppName("FirstSpark").setMaster("local[*]")
 sc = SparkContext(conf=conf)
 sc.setLogLevel("WARN")  # 日志输出级别
 # 2 - 从外部文件数据源读取数据
 fileRDD = sc.textFile("/export/data/pyspark_workspace/PySpark-SparkBase_3.1.2/data/words.txt")
 # fileRDD = sc.parallelize(["hello you", "hello me", "hello spark"])
 # 3 - 执行flatmap执行扁平化操作
 flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
 # print(type(flat_mapRDD))
 # print(flat_mapRDD.collect())
 # ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
 # # 4 - 执行map转化操作,得到(word, 1)
 rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
 # print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
 # print(rdd_mapRDD.collect())
 # [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
 # 5 - reduceByKey将相同Key的Value数据累加操作
 resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
 # print(type(resultRDD))
 print(resultRDD.collect())
 # [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
 # 6 - 将结果输出到文件系统或打印
 # resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
 # 7-停止SparkContext
 sc.stop()  # Shut down the SparkContext.
  • 切记忘记上传python的文件,直接执行
  • 注意1:自动上传设置

  • 注意2:增加如何使用standalone和HA的方式提交代码执行
  • 但是需要注意,尽可能使用hdfs的文件,不要使用单机版本的文件,因为standalone是集群模式
# -*- coding: utf-8 -*-
# Program function: Spark的第一个程序
# 1-思考:sparkconf和sparkcontext从哪里导保
# 2-如何理解算子?Spark中算子有2种,
# 一种称之为Transformation算子(flatMapRDD-mapRDD-reduceBykeyRDD),
# 一种称之为Action算子(输出到控制台,或文件系统或hdfs),比如collect或saveAsTextFile都是Action算子
>from pyspark import SparkConf, SparkContext
>
>if __name__ == '__main__':
>
># 1 - 首先创建SparkContext上下文环境
>
>conf = SparkConf().setAppName("FirstSpark").setMaster("spark://node1:7077,node2:7077")
>sc = SparkContext(conf=conf)
>sc.setLogLevel("WARN")  # 日志输出级别
>
># 2 - 从外部文件数据源读取数据
>
>fileRDD = sc.textFile("hdfs://node1:9820/pydata/input/hello.txt")
>
># fileRDD = sc.parallelize(["hello you", "hello me", "hello spark"])
>
># 3 - 执行flatmap执行扁平化操作
>
>flat_mapRDD = fileRDD.flatMap(lambda words: words.split(" "))
>
># print(type(flat_mapRDD))
>
># print(flat_mapRDD.collect())
>
># ['hello', 'you', 'Spark', 'Flink', 'hello', 'me', 'hello', 'she', 'Spark']
>
># # 4 - 执行map转化操作,得到(word, 1)
>
>rdd_mapRDD = flat_mapRDD.map(lambda word: (word, 1))
>
># print(type(rdd_mapRDD))#<class 'pyspark.rdd.PipelinedRDD'>
>
># print(rdd_mapRDD.collect())
>
># [('hello', 1), ('you', 1), ('Spark', 1), ('Flink', 1), ('hello', 1), ('me', 1), ('hello', 1), ('she', 1), ('Spark', 1)]
>
># 5 - reduceByKey将相同Key的Value数据累加操作
>
>resultRDD = rdd_mapRDD.reduceByKey(lambda x, y: x + y)
>
># print(type(resultRDD))
>
>print(resultRDD.collect())
>
># [('Spark', 2), ('Flink', 1), ('hello', 3), ('you', 1), ('me', 1), ('she', 1)]
>
># 6 - 将结果输出到文件系统或打印
>
># resultRDD.saveAsTextFile("D:\BigData\PyWorkspace\Bigdata25-pyspark_3.1.2\PySpark-SparkBase_3.1.2\data\output\wordsAdd")
>
># 7-停止SparkContext
>
>sc.stop()  # Shut down the SparkContext.

总结

  • 函数式编程
#Python中的函数式编程
#1-map(func, *iterables) --> map object
def fun(x):
    return x*x
#x=[1,2,3,4,5] y=map(fun,[1,2,3,4,5]) #[1, 4, 9, 16, 25]
print(list(map(fun, [1, 2, 3, 4, 5])))
#2-lambda 匿名函数  java: x=>x*x 表达式  Scala:x->x*x
g=lambda x:x*x
print(g(10))
print(list(map(lambda x:x*x, [1, 2, 3, 4, 5])))
def add(x,y):
    return x+y
print(list(map(add, range(5), range(5, 10))))
print(list(map(lambda x,y:x+y,range(5),range(5,10))))
#3- [add(x,y) for x,y in zip(range(5),range(5,10))]
# print(list(zip([1, 2, 3], [4, 5, 6])))#[1,4],[2,5]
# print(list(zip([1, 2, 3], [4, 5, 6,7])))#[1,4],[2,5]
# print(list(zip([1, 2, 3,6], [4, 5, 6])))#[1,4],[2,5]
# 语法 lambda表达式语言:【lambda 变量:表达式】
# 列表表达式 [表达式 for 变量 in 可迭代的序列中 if 条件]
print([add(x, y) for x, y in zip(range(5), range(5))])
#[0, 2, 4, 6, 8]
#3-reduce
from functools import  reduce
# ((((1+2)+3)+4)+5)
print(reduce(lambda x, y: x + y, [1, 2, 3, 4, 5]))
# 4-filter
seq1=['foo','x41','?1','***']
def func(x):
    #Return True if the string is an alpha-numeric string
    return x.isalnum()
print(list(filter(func,seq1))) #返回 filter 对象
# sorted()
# 最后我们可以看到,函数式编程有如下好处:
# 1)代码更简单了。
# 2)数据集,操作,返回值都放到了一起。
# 3)你在读代码的时候,没有了循环体,于是就可以少了些临时变量,以及变量倒来倒去逻辑。
# 4)你的代码变成了在描述你要干什么,而不是怎么去干。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
141 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
89 6
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
115 2
|
1月前
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
|
1月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
82 1
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
72 1
|
6月前
|
Python Windows
Python基础教程(第3版)中文版 第18章 程序打包 (笔记)
Python基础教程(第3版)中文版 第18章 程序打包 (笔记)
|
6月前
|
搜索推荐 区块链 开发者
【python程序打包教程】PyInstaller一键打包Python程序为独立可执行exe文件
【python程序打包教程】PyInstaller一键打包Python程序为独立可执行exe文件
|
7月前
|
Python
使用PyInstaller将Python应用程序打包成EXE文件
使用PyInstaller将Python应用程序打包成EXE文件
857 0