基于Python的神经网络模型结构框架可视化绘图简便方法

简介: 基于Python的神经网络模型结构框架可视化绘图简便方法

  最近需要进行神经网络的可视化。查阅多种方法后,看到很多方法都比较麻烦,例如单纯利用graphviz模块,就需要手动用DOT语言进行图片描述,比较花时间;最终,发现利用第三方的ann_visualizer模块,可以实现对已有神经网络的直接可视化,过程较为方便。

  相关环境的版本信息:

  Anaconda Navigator 1.10.0

  Python 3.8.5

  首先,下载与安装必要的模块ann_visualizer。打开Anaconda Prompt (Soft)

  在弹出的界面中输入:

pip install ann_visualizer

  即可完成ann_visualizer模块的安装。

  接下来,我们就可以借助以下仅仅一句代码对神经网络模型进行可视化了。

ann_viz(DNNModel,view=True,filename='G:/CropYield/02_CodeAndMap/01_SavedPicture/MyANN.gv',title='ANN')

  其中,DNNModel就是我们已经建立好的神经网络模型,任意神经网络模型均可——可以是一个简单的浅层人工神经网络,也可以是一个相对复杂的全连接深度神经网络view表示是否在代码执行后直接显示绘图结果;filename是绘图结果的保存位置,需要以.gv结尾;title就是神经网络图片的名称。

  在这里,我就直接以这篇博客1https://blog.csdn.net/zhebushibiaoshifu/article/details/114016531)中介绍并建立的深度神经网络加以可视化。

  第一次运行代码时发现,出现以下报错:

  报错提示我没有安装graphviz模块,但其实之前在进行随机森林决策树的可视化(也就是这篇博客2)时,早已经将这一模块安装过了,并且当时用到graphviz这一模块的代码也没有报错。通过查阅,发现这里需要重新安装一下python-graphviz这个新的模块。因此我们打开Anaconda Prompt (Soft),输入代码:

conda install python-graphviz

  如下图所示:

  安装之后这里就不报错啦~

  结果紧接着又报出了新的错误,说我的keras模块没有安装:

  这就不对了,明明在进行深度神经网络构建时都没有出现问题,甚至在这一句报错的下方连深度神经网络的误差绘制曲线都能显示(误差曲线的精度的确很差,大家不用在意~因为这里我们仅仅是做一个示范,所以Epoch次数就调得很小),说明keras模块应该是没问题的。

  随后考虑到,这里报错的keras是在ann_visualizer的文件环境下,可能是环境不同导致的。打开Anaconda Navigator,在base (root)环境下确实找不到keras

  那么我这里就图方便,直接在base (root)环境下再安装一个keras。安装方法同上,输入代码即可:

pip install keras

  然后这里就不报错啦~

  接下来,经过多次尝试发现,这一方法进行神经网络可视化时,一是不能存在正则化层与BatchNormalization层;二是LeakyReLU层与Dropout层的总数量不能过多,否则绘图结果会出现问题——这就显得这一可视化方法稍微有点鸡肋了,但是其对于基本的神经网络绘图而言其实也已经很不错了。因此,我就将这篇博客1中的神经网络上述对应的层删除或注释掉。

  如下图,首先,将当初我的代码对应的LeakyReLU层与Dropout层注释掉:

  然后执行代码,即可进行神经网络的可视化。且绘制出的图将会自动打开在PDF阅读软件中,如下图(版面有限,这里就只是绘图结果的一部分)。

  还是很不错的~我们还可以直接将其转换为图片格式,看起来就更直观了:

  如果再取消Dropout层的注释,即绘图时加上Dropout层,也还是很不错的:

  如果我们再加上LeakyReLU层,就成了这个乱七八糟、不太正确的样子(原图实在太大了,就只给大家截取图片的一部分):

  可以看到,这样的话就有些问题了。

  最后,我们看一下这个ann_visualizer第三方库的源代码,可以看到该库支持绘图的不同种类神经网络层;如果大家的神经网络包含这些层,就可以用ann_visualizer这一第三方库进行绘图。

  此外,如果需要在MATLAB中实现神经网络构建与简单的可视化,大家还可以查看这篇博客3



相关文章
|
1月前
|
机器学习/深度学习 API TensorFlow
BayesFlow:基于神经网络的摊销贝叶斯推断框架
BayesFlow 是一个基于 Python 的开源框架,利用摊销神经网络加速贝叶斯推断,解决传统方法计算复杂度高的问题。它通过训练神经网络学习从数据到参数的映射,实现毫秒级实时推断。核心组件包括摘要网络、后验网络和似然网络,支持摊销后验估计、模型比较及错误检测等功能。适用于流行病学、神经科学、地震学等领域,为仿真驱动的科研与工程提供高效解决方案。其模块化设计兼顾易用性与灵活性,推动贝叶斯推断从理论走向实践。
103 7
BayesFlow:基于神经网络的摊销贝叶斯推断框架
|
2月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
89 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
2月前
计算网络号的直接方法
子网掩码用于区分IP地址中的网络部分和主机部分,连续的“1”表示网络位,“0”表示主机位。例如,255.255.255.0 的二进制为 11111111.11111111.11111111.00000000,前24位是网络部分。通过子网掩码可提取网络号,如 IP 192.168.1.10 与子网掩码 255.255.255.0 的网络号为 192.168.1.0。此外,文档还介绍了十进制与二进制间的转换方法,帮助理解IP地址的组成与计算。
101 11
|
3月前
|
数据采集 存储 监控
Python 原生爬虫教程:网络爬虫的基本概念和认知
网络爬虫是一种自动抓取互联网信息的程序,广泛应用于搜索引擎、数据采集、新闻聚合和价格监控等领域。其工作流程包括 URL 调度、HTTP 请求、页面下载、解析、数据存储及新 URL 发现。Python 因其丰富的库(如 requests、BeautifulSoup、Scrapy)和简洁语法成为爬虫开发的首选语言。然而,在使用爬虫时需注意法律与道德问题,例如遵守 robots.txt 规则、控制请求频率以及合法使用数据,以确保爬虫技术健康有序发展。
309 31
|
4月前
|
缓存 数据中心 网络架构
5个减少网络延迟的简单方法
高速互联网对工作与娱乐至关重要,延迟和断线会严重影响效率和体验。本文探讨了导致连接缓慢的三个关键因素:吞吐量、带宽和延迟,并提供了减少延迟的实用方法。包括重启设备、关闭占用带宽的程序、使用有线连接、优化数据中心位置以及添加内容分发网络 (CDN) 等策略。虽然完全消除延迟不可能,但通过这些方法可显著改善网络性能。
902 7
|
3月前
|
开发框架 Java .NET
Python中main函数:代码结构的基石
在Python中,`main`函数是程序结构化和模块化的重要组成部分。它实现了脚本执行与模块导入的分离,避免全局作用域污染并提升代码复用性。其核心作用包括:标准化程序入口、保障模块复用及支持测试驱动开发(TDD)。根据项目复杂度,`main`函数有基础版、函数封装版、参数解析版和类封装版四种典型写法。 与其他语言相比,Python的`main`机制更灵活,支持同一文件作为脚本运行或模块导入。进阶技巧涵盖多文件项目管理、命令行参数处理、环境变量配置及日志集成等。此外,还需注意常见错误如全局变量污染和循环导入,并通过延迟加载、多进程支持和类型提示优化性能。
267 0
|
4月前
|
机器学习/深度学习 数据安全/隐私保护
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
|
4月前
|
Kubernetes Shell Windows
【Azure K8S | AKS】在AKS的节点中抓取目标POD的网络包方法分享
在AKS中遇到复杂网络问题时,可通过以下步骤进入特定POD抓取网络包进行分析:1. 使用`kubectl get pods`确认Pod所在Node;2. 通过`kubectl node-shell`登录Node;3. 使用`crictl ps`找到Pod的Container ID;4. 获取PID并使用`nsenter`进入Pod的网络空间;5. 在`/var/tmp`目录下使用`tcpdump`抓包。完成后按Ctrl+C停止抓包。
152 12
|
4月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。

推荐镜像

更多