HDFS--HA部署安装:修改配置文件 测试集群工作状态的一些指令

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: HDFS--HA部署安装:修改配置文件 测试集群工作状态的一些指令

修改配置文件

/export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop/

2.2.2修改core-site.xml

<configuration>
<!-- 集群名称在这里指定!该值来自于hdfs-site.xml中的配置 -->
<property>
<name>fs.defaultFS</name>
<value>hdfs://cluster1</value>
</property>
<!-- 这里的路径默认是NameNode、DataNode、JournalNode等存放数据的公共目录 -->
<property>
<name>hadoop.tmp.dir</name>
<value>/export/servers/hadoop-2.6.0-cdh5.14.0/HAhadoopDatas/tmp</value>
</property>
<!-- ZooKeeper集群的地址和端口。注意,数量一定是奇数,且不少于三个节点-->
<property>
<name>ha.zookeeper.quorum</name>
<value>node01:2181,node02:2181,node03:2181</value>
</property>
</configuration>

###############################################################################

2.2.3修改hdfs-site.xml

<configuration>
<!--指定hdfs的nameservice为cluster1,需要和core-site.xml中的保持一致 -->
<property>
<name>dfs.nameservices</name>
<value>cluster1</value>
</property>
<!-- cluster1下面有两个NameNode,分别是nn1,nn2 -->
<property>
<name>dfs.ha.namenodes.cluster1</name>
<value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.cluster1.nn1</name>
<value>node01:8020</value>
</property>
<!-- nn1的http通信地址 -->
<property>
<name>dfs.namenode.http-address.cluster1.nn1</name>
<value>node01:50070</value>
</property>
<!-- nn2的RPC通信地址 -->
<property>
<name>dfs.namenode.rpc-address.cluster1.nn2</name>
<value>node02:8020</value>
</property>
<!-- nn2的http通信地址 -->
<property>
<name>dfs.namenode.http-address.cluster1.nn2</name>
<value>node02:50070</value>
</property>
<!-- 指定NameNode的edits元数据在JournalNode上的存放位置 -->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://node01:8485;node02:8485;node03:8485/cluster1</value>
</property>
<!-- 指定JournalNode在本地磁盘存放数据的位置 -->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/export/servers/hadoop-2.6.0-cdh5.14.0/journaldata</value>
</property>
<!-- 开启NameNode失败自动切换 -->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!-- 指定该集群出故障时,哪个实现类负责执行故障切换 -->
<property>
<name>dfs.client.failover.proxy.provider.cluster1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
</value>
</property>
<!-- 使用sshfence隔离机制时需要ssh免登陆 -->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
<!-- 配置sshfence隔离机制超时时间 -->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>

###############################################################################

2.2.4修改mapred-site.xml

<configuration>
<!-- 指定mr框架为yarn方式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>  

###############################################################################

2.2.5修改yarn-site.xml

<configuration>
<!-- 开启RM高可用 -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!-- 指定RM的cluster id -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!-- 指定RM的名字 -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!-- 分别指定RM的地址 -->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>node01</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>node02</value>
</property>
<!-- 指定zk集群地址 -->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>node01:2181,node02:2181,node03:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</configuration>

2.2.6修改slaves

node01
node02
node03

将软件拷贝到所有节点

scp -r hadoop-2.6.0-cdh5.14.0 node02:/$PWD
    scp -r hadoop-2.6.0-cdh5.14.0 node03:/$PWD

2.2.7配置免密码登陆

#首先要配置node01到node01、node02、node03 的免密码登陆

#在node01上生产一对钥匙
    ssh-keygen  
#将公钥拷贝到其他节点,****包括自己****
ssh-coyp-id node01
ssh-coyp-id node02
ssh-coyp-id node03 
#注意:两个namenode之间要配置ssh免密码登陆  ssh远程补刀时候需要
#在node02上生产一对钥匙
ssh-keygen  
#将公钥拷贝到node01
ssh-coyp-id node01

###注意:严格按照下面的步骤!!!

2.5启动zookeeper集群(分别在node01、node02、node03上启动zk)

bin/zkServer.sh start

编辑一个总脚本,以便一次性启动

vi zkServerAll.sh

for host in node01 node02 node03
do
   ssh $host "source /etc/profile;/export/servers/zookeeper-3.4.9/bin/zkServer.sh start"
done
#查看状态:一个leader,两个follower
    bin/zkServer.sh status

2.6手动启动journalnode(分别在在node01、node02、node03上执行)

hadoop-daemon.sh start journalnode
    #运行jps命令检验,node01、node02、node03上多了JournalNode进程

vi hadoopAll.sh

for host in node01 node02 node03
do
   ssh $host "source /etc/profile;/export/servers/hadoop-2.6.0-cdh5.14.0/sbin/hadoop-daemon.sh start journalnode"

done

2.7格式化namenode

#在node01上执行命令:

hdfs namenode -format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置的目录下生成个hdfs初始化文件,

hadoop.tmp.dir配置的目录下所有文件拷贝到另一台namenode节点所在的机器

scp -r hadoopDatas node02:/$PWD

##也可以这样,建议hdfs namenode -bootstrapStandby

2.8格式化ZKFC(在active上执行即可)

hdfs zkfc -formatZK

2.9启动HDFS(在node01上执行)

start-dfs.sh

到此,hadoop-2.6.4配置完毕,可以统计浏览器访问:

http://node01:50070
  NameNode 'node01:8020' (active)
  http://node02:50070
  NameNode 'node02:8020' (standby)

验证HDFS HA

首先向hdfs上传一个文件

hadoop fs -put /etc/profile /profile
  hadoop fs -ls /

然后再kill掉active的NameNode

kill -9 <pid of NN>

通过浏览器访问:http://node02:50070

NameNode ‘node02:8020’ (active)

这个时候node02上的NameNode变成了active

在执行命令:

hadoop fs -ls /

-rw-r–r-- 3 root supergroup 1926 2014-02-06 15:36 /profile

刚才上传的文件依然存在!!!

手动启动那个挂掉的NameNode

hadoop-daemon.sh start namenode

通过浏览器访问:http://node01:50070

NameNode ‘node01:8020’ (standby)

OK,大功告成!!!

查看zookeeper 节点信息

get  /hadoop-ha/cluster1/ActiveStandbyElectorLock 

测试集群工作状态的一些指令 :

hdfs dfsadmin -report  查看hdfs的各节点状态信息
cluster1n/hdfs haadmin -getServiceState nn1    获取一个namenode节点的HA状态
scluster1n/hadoop-daemon.sh start namenode  单独启动一个namenode进程
./hadoop-daemon.sh start zkfc   单独启动一个zkfc进程


相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
148 6
|
1月前
|
消息中间件 分布式计算 关系型数据库
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
大数据-140 - ClickHouse 集群 表引擎详解5 - MergeTree CollapsingMergeTree 与其他数据源 HDFS MySQL
44 0
|
1月前
|
自然语言处理 机器人 Python
ChatGPT使用学习:ChatPaper安装到测试详细教程(一文包会)
ChatPaper是一个基于文本生成技术的智能研究论文工具,能够根据用户输入进行智能回复和互动。它支持快速下载、阅读论文,并通过分析论文的关键信息帮助用户判断是否需要深入了解。用户可以通过命令行或网页界面操作,进行论文搜索、下载、总结等。
44 1
ChatGPT使用学习:ChatPaper安装到测试详细教程(一文包会)
|
15天前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
17 1
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
38 4
|
1月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
88 3
|
1月前
Hadoop-09-HDFS集群 JavaClient 代码上手实战!详细附代码 安装依赖 上传下载文件 扫描列表 PUT GET 进度条显示(二)
Hadoop-09-HDFS集群 JavaClient 代码上手实战!详细附代码 安装依赖 上传下载文件 扫描列表 PUT GET 进度条显示(二)
40 3
|
1月前
|
SQL 分布式计算 Hadoop
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
Hadoop-19 Flume Agent批量采集数据到HDFS集群 监听Hive的日志 操作则把记录写入到HDFS 方便后续分析
43 2
|
1月前
|
SQL
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(二)
33 2
|
1月前
|
分布式计算 Java Hadoop
Hadoop-09-HDFS集群 JavaClient 代码上手实战!详细附代码 安装依赖 上传下载文件 扫描列表 PUT GET 进度条显示(一)
Hadoop-09-HDFS集群 JavaClient 代码上手实战!详细附代码 安装依赖 上传下载文件 扫描列表 PUT GET 进度条显示(一)
40 2

热门文章

最新文章