GPU实例使用--自动安装NVIDIA GPU驱动和CUDA组件

本文涉及的产品
轻量应用服务器 2vCPU 4GiB,适用于搭建容器环境
轻量应用服务器 2vCPU 4GiB,适用于搭建Web应用/小程序
轻量应用服务器 4vCPU 16GiB,适用于搭建游戏自建服
简介: GPU 云服务器正常工作需提前安装正确的基础设施软件,对于搭载了 NVIDIA 系列 GPU卡的实例而言,如果把 NVIDIA GPU 用作通用计算,则需安装 NVIDIA GPU 驱动、 CUDA、cuDNN等软件。

背景

GPU 云服务器正常工作需提前安装正确的基础设施软件,对于搭载了 NVIDIA 系列 GPU卡的实例而言,如果把 NVIDIA GPU 用作通用计算,则需安装 NVIDIA GPU 驱动、 CUDA、cuDNN等软件。

安装NVIDIA GPU驱动和CUDA等软件的流程大概分为如下几步:

  1. 确定需要使用的GPU驱动、CUDA版本
  2. 找到正确的下载链接
  3. 下载安装包
  4. 安装依赖包
  5. 安装驱动或CUDA包

GPU云服务器售卖的NVIDIA卡规格实例基本都是Telsa系列的卡,我们的很多用户以前并没有使用过,或者很多用户以前并没有使用过NVIDIA GPU,更不要说安装这些基础软件了,那么客户在实际的安装操作过程中会遇到很多问题:

  1. 不知道需要下载哪个版本,或者下载的GPU驱动与CUDA安装包版本不匹配,导致报错
  2. 下载错误的GPU驱动,很多用户会下载GeForce消费卡驱动,不匹配,导致报错
  3. NVIDIA官网提供的下载源是国外源,网络不稳定导致下载慢、下载失败
  4. 不知道如何安装依赖包
  5. 在安装驱动或CUDA的过程中出现的问题无法解决
  6. 对于A100 卡裸金属实例,很多用户不知道还要额外安装与驱动版本对应的nvidia-fabricmanager软件

用户自己安装可能花费时间较久,在用户的应用部署起来之前就已经花费比较多的费用,用户体验很差。用户在安装过程中遇到的各种问题都会提工单寻求帮助,导致值班同学每天要处理很多安装软件相关的工单,占用了大量的时间。在这种情况下GPU自动安装诞生了。


GPU自动安装介绍

为解决用户的问题,提升用户体验,我们制定了2种解决方案:

  1. 在镜像市场提供预装好NVIDIA GPU驱动/CUDA/cuDNN软件的自定义镜像,用户在购买GPU实例时可以直接选择这些镜像来创建实例, 方便快捷,适用于对GPU驱动/CUDA版本要求不高的用户。
  2. 在GPU实例购买页面提供“安装GPU驱动”的勾选框,提供了多个GPU驱动、CUDA、cuDNN版本供客户灵活选择,用户在实例购买页面选择GPU实例规格后,对于支持GPU自动安装的公共镜像操作系统版本,可以选择自己想要安装的GPU驱动、CUDA、cuDNN版本,在实例创建并启动后会自动进行相关软件的下载和安装,无需用户参与。

如果在购买页没有勾选GPU自动安装,那么在实例创建后,在实例内执行自动安装脚本也可以实现NVIDIA GPU驱动及CUDA/cuDNN库的自动安装。

GPU自动安装的整个过程只需要10分钟左右,用户在登录实例后,如果安装正在进行,用户可以直观的看到安装正在进行到哪一步,在安装完成后也会提示用户安装是否成功。

此外,对于GPU云服务器提供的支持ERI的高带宽实例规格ebmgn7ex、ebmgn7v、ebmgn7ix,支持RMDA的高带宽超算集群实例规格sccgn7ex,如果想要使能eRDMA或RDMA,需要安装eRDMA/RDMA相关的软件栈,GPU自动安装也能帮助客户进行一键安装。

GPU自动安装极大的方便了用户安装使用GPU所必须的基础软件,提升了用户体验,在GPU自动安装发布后,GPU云服务器实例的工单量降低了1/3, 为值班同学节省了大量的时间。


GPU自动安装的使用

1.购买实例时选择安装GPU驱动

在云服务器创建实例的过程中,选择要购买的具体规格,并镜像区域的公共镜像中,选择所需的Linux操作系统及版本,选择后对于支持自动安装GPU驱动的规格和操作系统,会出现 “安装GPU驱动”勾选框,勾选后即可按需选择GPU驱动、CUDA 和 cuDNN 版本。如下图所示:

1.png



2.实例购买后,自动安装GPU驱动

如果用户在创建实例时,没有选择安装GPU驱动, 对于支持自动安装GPU驱动的规格和操作系统,用户可以在实例内通过执行脚本的方式来自动安装GPU驱动、CUDA及cuDNN。

2.png

3.RDMA/eRDMA软件栈自动安装

3.png



4.镜像市场购买

在镜像市场搜索NVIDIA关键字,可以找到并使用预装好GPU驱动/CUDA/cuDNN软件的镜像创建实例,免去安装过程,客户可以直接部署自己的应用,帮助客户节省时间。

更多关于GPU自动安装及如何使用的介绍可以参考帮助文档:https://help.aliyun.com/zh/egs/user-guide/create-a-linux-gpu-accelerated-instance-configured-with-a-gpu-driver

我们更欢迎您分享您对阿里云产品的设想、对功能的建议或者各种吐槽,请扫描提交问卷并获得社区积分或精美礼品一份。https://survey.aliyun.com/apps/zhiliao/P4y44bm_8

【扫码填写上方调研问卷】

欢迎每位来到弹性计算的开发者们来反馈问题哦~

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
7月前
|
机器学习/深度学习 人工智能 并行计算
GPU算力平台:数字化转型的核心驱动力
【8月更文第5天】随着人工智能(AI)、大数据分析以及高性能计算需求的不断增长,图形处理器(GPU)因其卓越的并行计算能力而成为加速这些领域的关键技术。GPU算力平台不仅能够显著提升计算效率,还能帮助企业更好地处理大规模数据集,支持复杂的机器学习模型训练,并促进实时数据分析。本文将探讨GPU算力平台在数字化转型中的核心作用,并通过示例代码展示其在实际应用中的优势。
406 1
|
4月前
|
人工智能 并行计算 流计算
【AI系统】GPU 架构与 CUDA 关系
本文介绍了英伟达GPU硬件基础概念,重点解析了A100 GPU架构中的GPC、TPC、SM等组件及其功能。接着深入讲解了CUDA并行计算平台和编程模型,特别是CUDA线程层次结构。最后,文章探讨了如何根据CUDA核心数量、核心频率等因素计算GPU的算力峰值,这对于评估大模型训练的算力需求至关重要。
196 3
|
6月前
|
存储 并行计算 算法
CUDA统一内存:简化GPU编程的内存管理
在GPU编程中,内存管理是关键挑战之一。NVIDIA CUDA 6.0引入了统一内存,简化了CPU与GPU之间的数据传输。统一内存允许在单个地址空间内分配可被两者访问的内存,自动迁移数据,从而简化内存管理、提高性能并增强代码可扩展性。本文将详细介绍统一内存的工作原理、优势及其使用方法,帮助开发者更高效地开发CUDA应用程序。
|
9月前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU服务器租用费用_NVIDIA A10、V100、T4、P4、P100 GPU卡
阿里云GPU云服务器提供NVIDIA A10、V100、T4、P4、P100等多种GPU卡,结合高性能CPU,单实例计算性能高达5PFLOPS。支持2400万PPS及160Gbps内网带宽。实例规格多样,如A10卡GN7i(3213.99元/月)、V100-16G卡GN6v(3830.00元/月)等。适用于深度学习、科学计算、图形处理等场景。GPU软件如AIACC-Training、AIACC-Inference助力性能优化。购买方式灵活,客户案例包括深势科技、流利说、小牛翻译。
1352 0
|
9月前
|
缓存 Serverless API
函数计算产品使用问题之GPU实例留运行但未进行 GPU 计算,是否还会计费
函数计算产品作为一种事件驱动的全托管计算服务,让用户能够专注于业务逻辑的编写,而无需关心底层服务器的管理与运维。你可以有效地利用函数计算产品来支撑各类应用场景,从简单的数据处理到复杂的业务逻辑,实现快速、高效、低成本的云上部署与运维。以下是一些关于使用函数计算产品的合集和要点,帮助你更好地理解和应用这一服务。
|
9月前
|
XML 机器学习/深度学习 监控
性能监控之Telegraf+InfluxDB+Grafana NVIDIA GPU实时监控
【6月更文挑战12天】性能监控之Telegraf+InfluxDB+Grafana NVIDIA GPU实时监控
215 0
|
10月前
|
机器学习/深度学习 并行计算 算法框架/工具
Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置
Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置
1506 3
|
10月前
|
并行计算 API C++
GPU 硬件与 CUDA 程序开发工具
GPU 硬件与 CUDA 程序开发工具
188 0
|
22天前
|
存储 机器学习/深度学习 人工智能
2025年阿里云GPU服务器租用价格、选型策略与应用场景详解
随着AI与高性能计算需求的增长,阿里云提供了多种GPU实例,如NVIDIA V100、A10、T4等,适配不同场景。2025年重点实例中,V100实例GN6v单月3830元起,适合大规模训练;A10实例GN7i单月3213.99元起,适用于混合负载。计费模式有按量付费和包年包月,后者成本更低。针对AI训练、图形渲染及轻量级推理等场景,推荐不同配置以优化成本和性能。阿里云还提供抢占式实例、ESSD云盘等资源优化策略,支持eRDMA网络加速和倚天ARM架构,助力企业在2025年实现智能计算的效率与成本最优平衡。 (该简介为原文内容的高度概括,符合要求的字符限制。)
|
15天前
|
边缘计算 调度 对象存储
部署DeepSeek但IDC GPU不足,阿里云ACK Edge虚拟节点来帮忙
介绍如何使用ACK Edge与虚拟节点满足DeepSeek部署的弹性需求。

相关产品

  • GPU云服务器