Python 制作微博抓取 GUI 程序

简介: vPython 制作微博抓取 GUI 程序

在前面的分享中,我们制作了一个天眼查 GUI 程序,今天我们在这个的基础上,继续开发新的功能,微博抓取工具,先来看下最终的效果

整体的界面还是继承自上次的天眼查界面,我们直接来看相关功能

微博功能布局

我们整体的界面布局就是左侧可以选择不同功能,然后右侧的界面会对应改变

创建微博 Widget

对于右侧界面的切换,我们可以为不同的功能创建不同的 Widget,当点击左侧不同功能按钮后,对应切换 Widget 即可

我们新建一个 weibo 相关的函数,主要用来界面布局

def weiboWidget(self):
    self.left_button_widget_3 = QtWidgets.QWidget()
    self.weiboWebEngine = QWebEngineView()
    self.weiboWebEngine2 = QWebEngineView()
    self.progressWidget = QtWidgets.QWidget()
    self.ciyunWidget = QtWidgets.QWidget()

我们还看到整体界面有一个词云,该词云是通过 matplotlib 渲染的,所以还需要创建 matplotlib 布局

# matplotlib 绘图区域
self.figure = plt.figure(figsize=(7, 2))
self.canvas = FigureCanvasQTAgg(self.figure)  # 绘图区域放到图层canvas之中
self.gridLayout_weibo.addWidget(self.canvas, 5, 0, 1, 9)  # 图层放到pyqt布局之中

创建微博查询

接下来我们创建一个微博查询函数,同时因为我们这里需要实时更新抓取进度条,所以使用了多线程的方式

def doWeiboQuery(self):
    weibo_link = self.lineEdit_weibo_link.text()
    weibo_name = self.lineEdit_weibo_name.text()
    weibo_page = self.weibo_comboBox.currentText()
    if not weibo_link or not weibo_name:
        QMessageBox.information(self, "Error", "微博链接或者用户名称不能为空",
                                QMessageBox.Yes)
        return
    self.weiboWebEngine.load(QUrl(weibo_link))
    self.qth = WeiBoQueryThread()
    self.qth.update_data.connect(self.weiboPgbUpdate)
    self.qth.draw_ciyun.connect(self.drawCiyun)
    self.qth.weibo_page = weibo_page
    self.qth.weibo_link = weibo_link
    self.qth.weibo_name = weibo_name
    self.qth.start()

而主线程与子线程之间的通信,是使用信号槽的形式

def weiboPgbUpdate(self, data):
    self.pgb.setValue(data)
def drawCiyun(self):
    self.canvas.draw()
    self.toolbar = NavigationToolbar2QT(self.canvas, self)
    self.gridLayout_weibo.addWidget(self.toolbar, 8, 0, 1, 9)

接下来就是创建子进程函数,函数主体是爬取微博的代码

"""子进程微博查询"""
class WeiBoQueryThread(QThread):
    # 创建一个信号,触发时传递当前时间给槽函数
    update_data = pyqtSignal(int)
    draw_ciyun = pyqtSignal()
    weibo_name = None
    weibo_link = None
    weibo_page = None
    total_pv = 0
    timestamp = str(int(time.time()))
    def run(self):
        # 微博爬虫
        try:
            file_name = self.weibo_name + "_" + self.timestamp + 'comment.csv'
            my_weibo = weibo_interface.Weibo(self.weibo_name)
            uid, blog_info = my_weibo.weibo_info(self.weibo_link)
            pv_max = int(self.weibo_page)
            pre_pv = 100 // pv_max
            for i in range(int(self.weibo_page)):
                my_weibo.weibo_comment(uid, blog_info, str(i), file_name)
                self.total_pv += pre_pv
                self.update_data.emit(self.total_pv)
            print("所有微博评论爬取完成!")
            print("开始生成词云")
            font, img_array, STOPWORDS, words = ciyun(file_name)
            wc = WordCloud(width=2000, height=1800, background_color='white', font_path=font, mask=img_array,
                           stopwords=STOPWORDS, contour_width=3, contour_color='steelblue').generate(words)
            plt.imshow(wc)
            plt.axis("off")
            self.draw_ciyun.emit()
            print("生成词云完成")
        except Exception as e:
            print(e)

而对于微博的具体爬取方法,这里就不再展开说明了,我是把所有微博爬虫的代码都封装好了,这里直接调用暴露的接口即可

对微博爬虫感兴趣的同学可以点在看,如果数量可观就专门写一篇文章,谢谢大家

词云制作

对于词云的制作,我们还是先通过 jieba 进行分词处理,然后使用 wordcloud 库生成词云即可

# 词云相关
def ciyun(file, without_english=True):
    font = r'C:\Windows\Fonts\FZSTK.TTF'
    STOPWORDS = {"回复", "@", "我", "她", "你", "他", "了", "的", "吧", "吗", "在", "啊", "不", "也", "还", "是",
                 "说", "都", "就", "没", "做", "人", "赵薇", "被", "不是", "现在", "什么", "这", "呢", "知道", "邓"}
    df = pd.read_csv(file, usecols=[0])
    df_copy = df.copy()
    df_copy['comment'] = df_copy['comment'].apply(lambda x: str(x).split())  # 去掉空格
    df_list = df_copy.values.tolist()
    comment = jieba.cut(str(df_list), cut_all=False)
    words = ' '.join(comment)
    if without_english:
        words = re.sub('[a-zA-Z]', '', words)
    img = Image.open('ciyun.png')
    img_array = np.array(img)
    return font, img_array, STOPWORDS, words

由于很多评论当中会存在链接信息,导致制作的词云有很多高权重的英文字符,所有这里也通过正则进行了去英文字符处理

至此,我们这个微博查询功能就完成了~

相关文章
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
3天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
5天前
|
机器学习/深度学习 数据挖掘 开发者
Python编程入门:理解基础语法与编写第一个程序
【10月更文挑战第37天】本文旨在为初学者提供Python编程的初步了解,通过简明的语言和直观的例子,引导读者掌握Python的基础语法,并完成一个简单的程序。我们将从变量、数据类型到控制结构,逐步展开讲解,确保即使是编程新手也能轻松跟上。文章末尾附有完整代码示例,供读者参考和实践。
|
16天前
|
数据可视化 开发者 Python
Python GUI开发:Tkinter与PyQt的实战应用与对比分析
【10月更文挑战第26天】本文介绍了Python中两种常用的GUI工具包——Tkinter和PyQt。Tkinter内置于Python标准库,适合初学者快速上手,提供基本的GUI组件和方法。PyQt基于Qt库,功能强大且灵活,适用于创建复杂的GUI应用程序。通过实战示例和对比分析,帮助开发者选择合适的工具包以满足项目需求。
59 7
|
15天前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
41 3
|
17天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
18 3
|
20天前
|
存储 人工智能 数据挖掘
Python编程入门:构建你的第一个程序
【10月更文挑战第22天】编程,这个听起来高深莫测的词汇,实际上就像搭积木一样简单有趣。本文将带你走进Python的世界,用最浅显的语言和实例,让你轻松掌握编写第一个Python程序的方法。无论你是编程新手还是希望了解Python的爱好者,这篇文章都将是你的理想起点。让我们一起开始这段奇妙的编程之旅吧!
20 3
|
10天前
|
存储 机器学习/深度学习 搜索推荐
Python编程入门:从零开始构建你的第一个程序
【10月更文挑战第32天】本文旨在通过浅显易懂的方式引导编程新手进入Python的世界。我们将一起探索Python的基础语法,并通过实例学习如何构建一个简单的程序。文章将不直接展示代码,而是鼓励读者在阅读过程中自行尝试编写,以加深理解和记忆。无论你是编程初学者还是希望巩固基础知识的开发者,这篇文章都将是你的良师益友。让我们开始吧!
|
数据采集 Python Windows
python爬虫-抓取百度贴吧帖子图片
本爬虫可以爬取百度贴吧帖子中的图片,代码有待完善,欢迎大家指教! 出处:https://github.com/jingsupo/python-spider/blob/master/day03/07tieba.
1040 0