Pandas Query 方法深度总结

简介: Pandas Query 方法深度总结

大多数 Pandas 用户都熟悉 iloc[]loc[] 索引器方法,用于从 Pandas DataFrame 中检索行和列。但是随着检索数据的规则变得越来越复杂,这些方法也随之变得更加复杂而臃肿。

同时 SQL 也是我们经常接触且较为熟悉的语言,那么为什么不使用类似于 SQL 的东西来查询我们的数据呢

事实证明实际上可以使用 query() 方法做到这一点。因此,在今天的文章中,我们将展示如何使用 query() 方法对数据框执行查询

获取数据

我们使用 kaggle 上的 Titanic 数据集作为本文章的测试数据集,下载地址如下:

https://www.kaggle.com/datasets/tedllh/titanic-train

当然也可以在文末获取到萝卜哥下载好的数据集

载入数据

下面文末就可以使用 read_csv 来载入数据了

import pandas as pd
df = pd.read_csv('titanic_train.csv')
df

数据集有 891 行和 12 列:

使用 query() 方法

让我们找出从南安普敦 (‘S’) 出发的所有乘客,可以使用方括号索引,代码如下所示:

df[df['Embarked'] == 'S']

如果使用 query() 方法,那么看起来更整洁:

df.query('Embarked == "S"')

与 SQL 比较,则 query() 方法中的表达式类似于 SQL 中的 WHERE 语句。

结果是一个 DataFrame,其中包含所有从南安普敦出发的乘客:

query() 方法接受字符串作为查询条件串,因此,如果要查询字符串列,则需要确保字符串被正确括起来:

很多时候,我们可能希望将变量值传递到查询字符串中,可以使用 @ 字符执行此操作:

embarked = 'S'
df.query('Embarked == @embarked')

或者也可以使用 f 字符串,如下所示:

df.query(f'Embarked == "{embarked}"')

就个人而言,我认为与 f-string 方式相比,使用 @ 字符更简单、更优雅,你认为呢

如果列名中有空格,可以使用反引号 (``) 将列名括起来:

df.query('`Embarked On` == @embarked')

以 In-place 的方式执行 query 方法

当使用 query() 方法执行查询时,该方法将结果作为 DataFrame 返回,原始 DataFrame 保持不变。如果要更新原始 DataFrame,需要使用 inplace 参数,如下所示:

df.query('Embarked == "S"', inplace=True)

当 inplace 设置为 True 时,query() 方法将不会返回任何值,原始 DataFrame 被修改。

指定多个条件查询

我们可以在查询中指定多个条件,例如假设我想获取所有从南安普敦 (‘S’) 或瑟堡 (‘C’) 出发的乘客。如果使用方括号索引,这种语法很快变得非常笨拙:

df[(df['Embarked'] == 'S') | (df['Embarked'] == 'C')]

我们注意到,在这里我们需要在查询的条件下引用 DataFrame 两次,而使用 query() 方法,就简洁多了:

df.query('Embarked in ("S","C")')

查询结果如下

如果要查找所有不是从南安普敦(‘S’)或瑟堡(‘C’)出发的乘客,可以在 Pandas 中使用否定运算符 (~):

df[~((df['Embarked'] == 'S') | (df['Embarked'] == 'C'))]

使用 query() 方法,只需要使用 not 运算符:

df.query('Embarked not in ("S","C")')

以下输出显示了从皇后镇 (‘Q’) 出发的乘客以及缺失值的乘客:

说到缺失值,该怎么查询缺失值呢,当应用于列名时,我们可以使用 isnull() 方法查找缺失值:

df.query('Embarked.isnull()')

现在将显示 Embarked 列中缺少值的行:

其实可以直接在列名上调用各种 Series 方法:

df.query('Name.str.len() < 20')  # find passengers whose name is 
                                 # less than 20 characters
df.query(f'Ticket.str.startswith("A")') # find all passengers whose 
                                        # ticket starts with A

比较数值列

我们还可以轻松比较数字列:

df.query('Fare > 50')

以下输出显示了票价大于 50 的所有行:

比较多个列

还可以使用 and、or 和 not 运算符比较多个列,以下语句检索 Fare 大于 50 和 Age 大于 30 的所有行:

df.query('Fare > 50 and Age > 30')

下面是查询结果

查询索引

通常当我们想根据索引值检索行时,可以使用 loc[] 索引器,如下所示:

df.loc[[1],:]  # get the row whose index is 1; return as a dataframe

但是使用 query() 方法,使得事情变得更加直观:

df.query('index==1')

结果如下

如果要检索索引值小于 5 的所有行:

df.query('index<5')

结果如下

我们还可以指定索引值的范围:

df.query('6 <= index < 20')

结果如下

比较多列

我们还可以比较列之间的值,例如以下语句检索 Parch 值大于 SibSp 值的所有行:

df.query('Parch > SibSp')

结果如下

总结

从上面的示例可以看出,query() 方法使搜索行的语法更加自然简洁,希望感兴趣的小伙伴多加练习,真正的达到融会贯通的地步哦~

相关文章
|
7月前
|
人工智能 安全 数据挖掘
Pandas AI:Pandas与人工智能的结合,让你不再拘泥于如何使用pandas方法及处理语法
Pandas AI:Pandas与人工智能的结合,让你不再拘泥于如何使用pandas方法及处理语法
331 1
|
3月前
|
SQL 索引 Python
Pandas中DataFrame合并的几种方法
Pandas中DataFrame合并的几种方法
239 0
|
1月前
|
Python
通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法
在金融分析领域,&quot;死叉&quot;指的是短期移动平均线(如MA5)下穿长期移动平均线(如MA10),而&quot;金叉&quot;则相反。本文介绍了一种利用Python编程语言,通过Pandas库处理股票收盘价数据,识别最近一次死叉后未出现金叉的具体位置的方法。该方法首先计算两种移动平均线,接着确定它们的交叉点,最后检查并输出最近一次死叉及其后是否形成了金叉。此技术广泛应用于股市趋势分析。
53 2
|
2月前
|
存储 数据采集 数据处理
Pandas中批量转换object至float的高效方法
在数据分析中,常需将Pandas DataFrame中的object类型列转换为float类型以进行数值计算。本文介绍如何使用`pd.to_numeric`函数高效转换,并处理非数字值,包括用0或平均值填充NaN值的方法。
97 1
|
3月前
|
数据处理 Python
Pandas中的drop_duplicates()方法详解
Pandas中的drop_duplicates()方法详解
275 2
|
3月前
|
数据处理 Python
Pandas快速统计重复值的2种方法
Pandas快速统计重复值的2种方法
184 1
|
3月前
|
数据挖掘 Python
掌握Pandas中的相关性分析:corr()方法详解
掌握Pandas中的相关性分析:corr()方法详解
286 0
|
3月前
|
数据处理 索引 Python
Pandas中resample方法:轻松处理时间序列数据
Pandas中resample方法:轻松处理时间序列数据
89 0
|
3月前
|
SQL 数据采集 索引
聚焦Pandas数据合并:掌握merge方法
聚焦Pandas数据合并:掌握merge方法
44 0
下一篇
DataWorks