Python自动化办公之Excel对比工具

简介: Python自动化办公之Excel对比工具

今天我们继续分享真实的自动化办公案例,希望各位 Python 爱好者能够从中得到些许启发,在自己的工作生活中更多的应用 Python,使得工作事半功倍!

需求

由于工作当中经常需要对比前后两个 Excel 文件,文件内容比较多,人工肉眼对比太费劲,还容易出错,搞个 Python 小工具,会不会事半功倍

运行脚本,可以把前后两个 Excel 文件当中不同的内容数据展现出来,不同 sheet 页签表示不同的数据处理结果

需求解析

不需要解析,直接干

代码实现

我们先导入两份测试数据,进行 old 和 new 的处理,注意数据中 account number 是唯一索引

old = pd.read_excel('sample-address-1.xlsx', 'Sheet1', na_values=['NA'])
new = pd.read_excel('sample-address-2.xlsx', 'Sheet1', na_values=['NA'])
old['version'] = "old"
new['version'] = "new"


对于我们这个小工具,主要考虑三种变化类型

  • 哪些是新增的 account
  • 哪些是被删除的 account
  • 哪些是被修改的 account

对于新增和删除的 account,我们可以直接用两份数据相减即可

old_accts_all = set(old['account number'])
new_accts_all = set(new['account number'])
dropped_accts = old_accts_all - new_accts_all
added_accts = new_accts_all - old_accts_all


接下来我们再将所有的数据拼接到一起,并使用 drop_duplicates 来保留被修改的数据

all_data = pd.concat([old,new],ignore_index=True)
changes = all_data.drop_duplicates(subset=["account number",
                                           "name", "street",
                                           "city","state",
                                           "postal code"], keep='last')


接下来,我们需要找出哪些 account 有重复的条目,重复的 account 表明更改了我们需要标记的字段中的值。我们可以使用重复函数来获取所有这些 account 的列表,并仅过滤掉那些重复的 account

dupe_accts = changes[changes['account number'].duplicated() == True]['account number'].tolist()
dupes = changes[changes["account number"].isin(dupe_accts)]dupe_accts = changes[changes['account number'].duplicated() == True]['account number'].tolist()dupes = changes[changes["account number"].isin(dupe_accts)]


现在我们将旧数据和新数据进行拆分,删除不必要的版本列并将 account 设置为索引

change_new = dupes[(dupes["version"] == "new")]
change_old = dupes[(dupes["version"] == "old")]
change_new = change_new.drop(['version'], axis=1)
change_old = change_old.drop(['version'], axis=1)
change_new.set_index('account number', inplace=True)
change_old.set_index('account number', inplace=True)
df_all_changes = pd.concat([change_old, change_new],
                            axis='columns',
                            keys=['old', 'new'],
                            join='outer')
df_all_changes


接下来我们定义一个函数来展示从一列到另一列的变化

def report_diff(x):
    return x[0] if x[0] == x[1] else '{} ---> {}'.format(*x)def report_diff(x):    return x[0] if x[0] == x[1] else '{} ---> {}'.format(*x)

现在使用 swaplevel 函数来获取彼此相邻的旧列和新列

最后我们使用 groupby 然后应用我们自定义 report_diff 函数将两个相应的列相互比较

df_changed = df_all_changes.groupby(level=0, axis=1).apply(lambda frame: frame.apply(report_diff, axis=1))
df_changed = df_changed.reset_index()df_changed = df_all_changes.groupby(level=0, axis=1).apply(lambda frame: frame.apply(report_diff, axis=1))df_changed = df_changed.reset_index()


接下来我们需要找出被删除和新增的数据

df_removed = changes[changes["account number"].isin(dropped_accts)]
df_added = changes[changes["account number"].isin(added_accts)]df_removed = changes[changes["account number"].isin(dropped_accts)]df_added = changes[changes["account number"].isin(added_accts)]

我们可以使用单独的选项卡将所有内容输出到 Excel 文件,对应于更改、添加和删除

output_columns = ["account number", "name", "street", "city", "state", "postal code"]
writer = pd.ExcelWriter("my-diff.xlsx")
df_changed.to_excel(writer,"changed", index=False, columns=output_columns)
df_removed.to_excel(writer,"removed",index=False, columns=output_columns)
df_added.to_excel(writer,"added",index=False, columns=output_columns)
writer.save()

最后,我们就得到了最开始的效果图片展示的一个新的 Excel 文件

当然上面的代码对于毫无编程的人来说还是有一点点复杂,我们还是做成 GUI 小程序吧,这次我们使用 Tkinter 来编写 GUI 程序

我们首先导入 Tkinter 库并进行初始化

import tkinter
from tkinter import *
from tkinter import Label, Button, Entry, messagebox
from tkinter import filedialog
from deal import deal_excel
window = tkinter.Tk()
path_file1 = StringVar()
path_file2 = StringVar()
path_path = StringVar()
window.geometry('380x150')

这里我们定义了三个 String 类型的变量,用来保存文件地址和文件夹路径

然后我们进行简单的页面排版,只需要用到 Label,Entry 和 Button 就够了

label1 = Label(window, text="文件1:").grid(column=0, row=0)
txt1 = Entry(window, width="30", textvariable=path_file1).grid(column=1, row=0)
button1 = Button(window, text="文件选择1", command=selectFile1).grid(column=2, row=0)
label2 = Label(window, text="文件2:").grid(column=0, row=1)
txt2 = Entry(window, width="30", textvariable=path_file2).grid(column=1, row=1)
button2 = Button(window, text="文件选择2", command=selectFile2).grid(row=1, column=2)
label3 = Label(window, text="新文件路径:").grid(column=0, row=2)
txt3 = Entry(window, width="30", textvariable=path_path)
txt3.grid(column=1, row=2)
button3 = Button(window, text="新文件路径", command=selectPath).grid(row=2, column=2)
button4 = Button(window, text="开始处理", command=save_path).grid(row=3, column=1)


用于获取文件和文件夹的函数

def selectFile1():
    path_ = filedialog.askopenfilename()
    path_file1.set(path_)

用于保存新生成文件和提示消息的函数

def save_path():
    path = txt3.get()
    deal_excel(path)
    res = "对比处理完成!"
    messagebox.showinfo('萝卜大杂烩', res)

这样,一个简单的 Excel 对比工具就完成啦

好了,这样我们就完成了一个简易的 GUI 拆分 PDF 文件的工具喽

相关文章
|
15天前
|
搜索推荐 Python
使用Python自动化生成物业通知单
本文介绍如何使用Python结合Pandas和python-docx库自动化生成物业通知单。通过读取Excel数据并填充至Word模板,实现高效准确的通知单批量制作。包括环境准备、代码解析及效果展示,适用于物业管理场景。
53 14
|
19天前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
|
27天前
|
数据采集 监控 数据挖掘
Python自动化脚本:高效办公新助手###
本文将带你走进Python自动化脚本的奇妙世界,探索其在提升办公效率中的强大潜力。随着信息技术的飞速发展,重复性工作逐渐被自动化工具取代。Python作为一门简洁而强大的编程语言,凭借其丰富的库支持和易学易用的特点,成为编写自动化脚本的首选。无论是数据处理、文件管理还是网页爬虫,Python都能游刃有余地完成任务,极大地减轻了人工操作的负担。接下来,让我们一起领略Python自动化脚本的魅力,开启高效办公的新篇章。 ###
|
5天前
|
JSON 数据可视化 测试技术
python+requests接口自动化框架的实现
通过以上步骤,我们构建了一个基本的Python+Requests接口自动化测试框架。这个框架具有良好的扩展性,可以根据实际需求进行功能扩展和优化。它不仅能提高测试效率,还能保证接口的稳定性和可靠性,为软件质量提供有力保障。
23 7
|
15天前
|
数据可视化 编译器 Python
Manim:数学可视化的强大工具 | python小知识
Manim(Manim Community Edition)是由3Blue1Brown的Grant Sanderson开发的数学动画引擎,专为数学和科学可视化设计。它结合了Python的灵活性与LaTeX的精确性,支持多领域的内容展示,能生成清晰、精确的数学动画,广泛应用于教育视频制作。安装简单,入门容易,适合教育工作者和编程爱好者使用。
76 7
|
20天前
|
Android开发 开发者 Python
通过标签清理微信好友:Python自动化脚本解析
微信已成为日常生活中的重要社交工具,但随着使用时间增长,好友列表可能变得臃肿。本文介绍了一个基于 Python 的自动化脚本,利用 `uiautomator2` 库,通过模拟用户操作实现根据标签批量清理微信好友的功能。脚本包括环境准备、类定义、方法实现等部分,详细解析了如何通过标签筛选并删除好友,适合需要批量管理微信好友的用户。
26 7
|
19天前
|
安全 API 文件存储
Yagmail邮件发送库:如何用Python实现自动化邮件营销?
本文详细介绍了如何使用Yagmail库实现自动化邮件营销。Yagmail是一个简洁强大的Python库,能简化邮件发送流程,支持文本、HTML邮件及附件发送,适用于数字营销场景。文章涵盖了Yagmail的基本使用、高级功能、案例分析及最佳实践,帮助读者轻松上手。
29 4
|
18天前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
25天前
|
监控 数据挖掘 数据安全/隐私保护
Python脚本:自动化下载视频的日志记录
Python脚本:自动化下载视频的日志记录
|
17天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
下一篇
DataWorks