- 有多个条件时替换 Numpy 数组中的元素
- 将所有大于 30 的元素替换为 0
- 将大于 30 小于 50 的所有元素替换为 0
- 给所有大于 40 的元素加 5
- 用 Nan 替换数组中大于 25 的所有元素
- 将数组中大于 25 的所有元素替换为 1,否则为 0
- 在 Python 中找到 Numpy 数组的维度
- 两个条件过滤 NumPy 数组
- Example 1
- Example 2
- Example 3
- Example 4
- Example 5
- 对最后一列求和
- 第一列总和
- 第二列总和
- 第一列和第二列的总和
- 最后一列的总和
- 满足条件,则替换 Numpy 元素
- 将所有大于 30 的元素替换为 0
- 将大于 30 小于 50 的所有元素替换为 0
- 给所有大于 40 的元素加 5
- 用 Nan 替换数组中大于 25 的所有元素
- 将数组中大于 25 的所有元素替换为 1,否则为 0
- 从 Nump y数组中随机选择两行
- Example 1
- Example 2
- Example 3
- 以给定的精度漂亮地打印一个 Numpy 数组
- Example 1
- Example 2
- Example 3
- Example 4
- Example 5
- 提取 Numpy 矩阵的前 n 列
- 列范围1
- 列范围2
- 列范围3
- 特定列
- 特定行和列
- 从 NumPy 数组中删除值
- Example 1
- Example 2
- Example 3
- 将满足条件的项目替换为 Numpy 数组中的另一个值
- 将所有大于 30 的元素替换为 0
- 将大于 30 小于 50 的所有元素替换为 0
- 给所有大于 40 的元素加 5
- 用 Nan 替换数组中大于 25 的所有元素
- 将数组中大于 25 的所有元素替换为 1,否则为 0
- 对 NumPy 数组中的所有元素求和
- 创建 3D NumPy 零数组
- 计算 NumPy 数组中每一行的总和
- 打印没有科学记数法的 NumPy 数组
- 获取numpy数组中所有NaN值的索引列表
- 检查 NumPy 数组中的所有元素都是 NaN
- 将列表添加到 Python 中的 NumPy 数组
- 在 Numpy 中抑制科学记数法
- 将具有 12 个元素的一维数组转换为 3 维数组
- Example 1
- Example 2
- Example 3
- Example 4
- 检查 NumPy 数组是否为空
- 在 Python 中重塑 3D 数组
- Example 1
- Example 2
- Example 3
- Example 4
- 在 Python 中重复 NumPy 数组中的一列
- 在 NumPy 数组中找到跨维度的平均值
- 检查 NumPy 数组中的 NaN 元素
- 格式化 NumPy 数组的打印方式
- Example 1
- Example 2
- Example 3
- Example 4
- Example 5
- 乘以Numpy数组的每个元素
- Example 1
- Example 2
- Example 3
- Example 4
- 在 NumPy 中生成随机数
- Example 1
- Example 2
- Example 3
- Numpy 将具有 8 个元素的一维数组转换为 Python 中的二维数组
- 4 行 2 列
- 2 行 4 列
- 在 Python 中使用 numpy.all()
- 将一维数组转换为二维数组
- 4 行 2 列
- 2 行 4 列
- Example 3
- 通过添加新轴将一维数组转换为二维数组
- Example 5
- 计算 NumPy 数组中唯一值的频率
- 在一列中找到平均值
- 在 Numpy 数组的长度、维度、大小
- Example 1
- Example 2
- 在 NumPy 数组中找到最大值的索引
- 按降序对 NumPy 数组进行排序
- 按降序对 Numpy 进行排序
- 按降序对 2D Numpy 进行排序
- 按降序对 Numpy 进行排序
- Numpy 从二维数组中获取随机的一组行
- Example 1
- Example 2
- Example 3
- 将 Numpy 数组转换为 JSON
- 检查 NumPy 数组中是否存在值
- 创建一个 3D NumPy 数组
- 在numpy中将字符串数组转换为浮点数数组
- 从 Python 的 numpy 数组中随机选择
- Example 1
- Example 2
- Example 3
- 不截断地打印完整的 NumPy 数组
- 将 Numpy 转换为列表
- 将字符串数组转换为浮点数数组
- 计算 NumPy 数组中每一列的总和
- 使用 Python 中的值创建 3D NumPy 数组
- 计算不同长度的 Numpy 数组的平均值
- 从 Numpy 数组中删除 nan 值
- Example 1
- Example 2
- 向 NumPy 数组添加一列
- 在 Numpy Array 中打印浮点值时如何抑制科学记数法
- Numpy 将 1d 数组重塑为 1 列的 2d 数组
- 初始化 NumPy 数组
- 创建重复一行
- 将 NumPy 数组附加到 Python 中的空数组
- 找到 Numpy 数组的平均值
- 计算每列的平均值
- 计算每一行的平均值
- 仅第一列的平均值
- 仅第二列的平均值
- 检测 NumPy 数组是否包含至少一个非数字值
- 在 Python 中附加 NumPy 数组
- 使用 numpy.any()
- 获得 NumPy 数组的转置
- 获取和设置NumPy数组的数据类型
- 获得NumPy数组的形状
- 获得 1、2 或 3 维 NumPy 数组
- 重塑 NumPy 数组
- 调整 NumPy 数组的大小
- 将 List 或 Tuple 转换为 NumPy 数组
- 使用 arange 函数创建 NumPy 数组
- 使用 linspace() 创建 NumPy 数组
- NumPy 日志空间数组示例
- 创建 Zeros NumPy 数组
- NumPy One 数组示例
- NumPy 完整数组示例
- NumPy Eye 数组示例
- NumPy 生成随机数数组
- NumPy 标识和对角线数组示例
- NumPy 索引示例
- 多维数组中的 NumPy 索引
- NumPy 单维切片示例
- NumPy 数组中的多维切片
- 翻转 NumPy 数组的轴顺序
- NumPy 数组的连接和堆叠
- NumPy 数组的算术运算
- NumPy 数组上的标量算术运算
- NumPy 初等数学函数
- NumPy Element Wise 数学运算
- NumPy 聚合和统计函数
- Where 函数的 NumPy 示例
- Select 函数的 NumPy 示例
- 选择函数的 NumPy 示例
- NumPy 逻辑操作,用于根据给定条件从数组中选择性地选取值
- 标准集合操作的 NumPy 示例
1有多个条件时替换 Numpy 数组中的元素
将所有大于 30 的元素替换为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 30, 0, the_array) print(an_array)
Output:
[ 0 7 0 27 13 0 0]
将大于 30 小于 50 的所有元素替换为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where((the_array > 30) & (the_array < 50), 0, the_array) print(an_array)
Output:
[ 0 7 0 27 13 0 71]
给所有大于 40 的元素加 5
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 40, the_array + 5, the_array) print(an_array)
Output:
[54 7 49 27 13 35 76]
用 Nan 替换数组中大于 25 的所有元素
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 25, np.NaN, the_array) print(an_array)
Output:
[nan 7. nan nan 13. nan nan]
将数组中大于 25 的所有元素替换为 1,否则为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.asarray([0 if val < 25 else 1 for val in the_array]) print(an_array)
Output:
[1 0 1 1 0 1 1]
2在 Python 中找到 Numpy 数组的维度
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) print(arr.ndim) arr = np.array([[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]]) print(arr.ndim) arr = np.array([[[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]]]) print(arr.ndim)
Output:
1 2 3
3两个条件过滤 NumPy 数组
Example 1
import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_and(np.greater(the_array, 3), np.less(the_array, 8)) print(the_array[filter_arr])
Output:
[4 5 6 7]
Example 2
import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_or(the_array < 3, the_array == 4) print(the_array[filter_arr])
Output:
[1 2 4]
Example 3
import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_not(the_array > 1, the_array < 5) print(the_array[filter_arr])
Output:
[1]
Example 4
import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_or(the_array == 8, the_array < 5) print(the_array[filter_arr])
Output:
[1 2 3 4 8]
Example 5
import numpy as np the_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9]) filter_arr = np.logical_and(the_array == 8, the_array < 5) print(the_array[filter_arr])
Output:
[]
4对最后一列求和
第一列总和
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3) print(newarr) column_sums = newarr[:, 0].sum() print(column_sums)
Output:
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] 22
第二列总和
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3) print(newarr) column_sums = newarr[:, 1].sum() print(column_sums)
Output:
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] 26
第一列和第二列的总和
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3) print(newarr) column_sums = newarr[:, 0:2].sum() print(column_sums)
Output:
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] 48
最后一列的总和
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3) print(newarr) column_sums = newarr[:, -1].sum() print(column_sums)
Output:
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] 30
5满足条件,则替换 Numpy 元素
将所有大于 30 的元素替换为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 30, 0, the_array) print(an_array)
Output:
[ 0 7 0 27 13 0 0]
将大于 30 小于 50 的所有元素替换为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where((the_array > 30) & (the_array < 50), 0, the_array) print(an_array)
Output:
[ 0 7 0 27 13 0 71]
给所有大于 40 的元素加 5
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 40, the_array + 5, the_array) print(an_array)
Output:
[54 7 49 27 13 35 76]
用 Nan 替换数组中大于 25 的所有元素
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 25, np.NaN, the_array) print(an_array)
Output:
[nan 7. nan nan 13. nan nan]
将数组中大于 25 的所有元素替换为 1,否则为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.asarray([0 if val < 25 else 1 for val in the_array]) print(an_array)
Output:
[1 0 1 1 0 1 1]
6从 Nump y数组中随机选择两行
Example 1
import numpy as np # create 2D array the_array = np.arange(50).reshape((5, 10)) # row manipulation np.random.shuffle(the_array) # display random rows rows = the_array[:2, :] print(rows)
Output:
[[10 11 12 13 14 15 16 17 18 19] [ 0 1 2 3 4 5 6 7 8 9]]
Example 2
import random import numpy as np # create 2D array the_array = np.arange(16).reshape((4, 4)) # row manipulation rows_id = random.sample(range(0, the_array.shape[1] - 1), 2) # display random rows rows = the_array[rows_id, :] print(rows)
Output:
[[ 4 5 6 7] [ 8 9 10 11]]
Example 3
import numpy as np # create 2D array the_array = np.arange(16).reshape((4, 4)) number_of_rows = the_array.shape[0] random_indices = np.random.choice(number_of_rows, size=2, replace=False) # display random rows rows = the_array[random_indices, :] print(rows)
Output:
[[ 4 5 6 7] [ 8 9 10 11]]
7以给定的精度漂亮地打印一个 Numpy 数组
Example 1
import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3) print(x) print(np.array_str(x, precision=1, suppress_small=True))
Output:
[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]] [[1.1 0.9 0. ] [1.1 0.9 0. ] [1.1 0.9 0. ]]
Example 2
import numpy as np x = np.random.random(10) print(x) np.set_printoptions(precision=3) print(x)
Output:
[0.53828153 0.75848226 0.50046312 0.94723558 0.50415632 0.13899663 0.80301141 0.40887872 0.24837485 0.83008548] [0.538 0.758 0.5 0.947 0.504 0.139 0.803 0.409 0.248 0.83 ]
Example 3
import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3) print(x) np.set_printoptions(suppress=True) print(x)
Output:
[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]] [[1.1 0.9 0.000001] [1.1 0.9 0.000001] [1.1 0.9 0.000001]]
Example 4
import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3) print(x) np.set_printoptions(formatter={'float': '{: 0.3f}'.format}) print(x)
Output:
[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]] [[ 1.100 0.900 0.000] [ 1.100 0.900 0.000] [ 1.100 0.900 0.000]]
Example 5
import numpy as np x = np.random.random((3, 3)) * 9 print(np.array2string(x, formatter={'float_kind': '{0:.3f}'.format}))
Output:
[[3.479 1.490 5.674] [6.043 7.025 1.597] [0.261 8.530 2.298]]
8提取 Numpy 矩阵的前 n 列
列范围1
import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8], [4, 5, 6, 7, 5, 3, 2, 5], [8, 9, 10, 11, 4, 5, 3, 5]]) print(the_arr[:, 1:5])
Output:
[[ 1 2 3 5] [ 5 6 7 5] [ 9 10 11 4]]
列范围2
import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8], [4, 5, 6, 7, 5, 3, 2, 5], [8, 9, 10, 11, 4, 5, 3, 5]]) print(the_arr[:, np.r_[0:1, 5]])
Output:
[[ 0 2 3 5] [ 4 6 7 5] [ 8 10 11 4]]
列范围3
import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8], [4, 5, 6, 7, 5, 3, 2, 5], [8, 9, 10, 11, 4, 5, 3, 5]]) print(the_arr[:, np.r_[:1, 3, 7:8]])
Output:
[[ 0 3 8] [ 4 7 5] [ 8 11 5]]
特定列
import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8], [4, 5, 6, 7, 5, 3, 2, 5], [8, 9, 10, 11, 4, 5, 3, 5]]) print(the_arr[:, 1])
Output:
[1 5 9]
特定行和列
import numpy as np the_arr = np.array([[0, 1, 2, 3, 5, 6, 7, 8], [4, 5, 6, 7, 5, 3, 2, 5], [8, 9, 10, 11, 4, 5, 3, 5]]) print(the_arr[0:2, 1:3])
Output:
[[1 2] [5 6]]
9从 NumPy 数组中删除值
Example 1
import numpy as np the_array = np.array([[1, 2], [3, 4]]) print(the_array) the_array = np.delete(the_array, [1, 2]) print(the_array)
Output:
[[1 2] [3 4]] [1 4]
Example 2
import numpy as np the_array = np.array([1, 2, 3, 4]) print(the_array) the_array = np.delete(the_array, np.where(the_array == 2)) print(the_array)
Output:
[1 2 3 4] [1 3 4]
Example 3
import numpy as np the_array = np.array([[1, 2], [3, 4]]) print(the_array) the_array = np.delete(the_array, np.where(the_array == 3)) print(the_array)
Output:
[[1 2] [3 4]] [3 4]
10将满足条件的项目替换为 Numpy 数组中的另一个值
将所有大于 30 的元素替换为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 30, 0, the_array) print(an_array)
Output:
[ 0 7 0 27 13 0 0]
将大于 30 小于 50 的所有元素替换为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where((the_array > 30) & (the_array < 50), 0, the_array) print(an_array)
Output:
[ 0 7 0 27 13 0 71]
给所有大于 40 的元素加 5
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 40, the_array + 5, the_array) print(an_array)
Output:
[54 7 49 27 13 35 76]
用 Nan 替换数组中大于 25 的所有元素
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.where(the_array > 25, np.NaN, the_array) print(an_array)
Output:
[nan 7. nan nan 13. nan nan]
将数组中大于 25 的所有元素替换为 1,否则为 0
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) an_array = np.asarray([0 if val < 25 else 1 for val in the_array]) print(an_array)
Output:
[1 0 1 1 0 1 1]
11对 NumPy 数组中的所有元素求和
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3) column_sums = newarr[:, :].sum() print(column_sums)
Output:
78
12创建 3D NumPy 零数组
import numpy as np the_3d_array = np.zeros((2, 2, 2)) print(the_3d_array)
Output:
[[[0. 0.] [0. 0.]] [[0. 0.] [0. 0.]]]
13计算 NumPy 数组中每一行的总和
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3) print(newarr) column_sums = newarr.sum(axis=1) print(column_sums)
Output:
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] [ 6 15 24 33]
14打印没有科学记数法的 NumPy 数组
import numpy as np np.set_printoptions(suppress=True, formatter={'float_kind': '{:f}'.format}) the_array = np.array([3.74, 5162, 13683628846.64, 12783387559.86, 1.81]) print(the_array)
Output:
[3.740000 5162.000000 13683628846.639999 12783387559.860001 1.810000]
15获取numpy数组中所有NaN值的索引列表
import numpy as np the_array = np.array([np.nan, 2, 3, 4]) array_has_nan = np.isnan(the_array) print(array_has_nan)
Output:
[ True False False False]
16检查 NumPy 数组中的所有元素都是 NaN
import numpy as np the_array = np.array([np.nan, 2, 3, 4]) array_has_nan = np.isnan(the_array).all() print(array_has_nan) the_array = np.array([np.nan, np.nan, np.nan, np.nan]) array_has_nan = np.isnan(the_array).all() print(array_has_nan)
Output:
False True
17将列表添加到 Python 中的 NumPy 数组
import numpy as np the_array = np.array([[1, 2], [3, 4]]) columns_to_append = [5, 6] the_array = np.insert(the_array, 2, columns_to_append, axis=1) print(the_array)
Output:
[[1 2 5] [3 4 6]]
18在 Numpy 中抑制科学记数法
import numpy as np np.set_printoptions(suppress=True, formatter={'float_kind': '{:f}'.format}) the_array = np.array([3.74, 5162, 13683628846.64, 12783387559.86, 1.81]) print(the_array)
Output:
[3.740000 5162.000000 13683628846.639999 12783387559.860001 1.810000]
19将具有 12 个元素的一维数组转换为 3 维数组
Example 1
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(2, 3, 2) print(newarr)
Output:
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(2, 3, 2) print(newarr)
Example 2
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(3, 2, 2) print(newarr)
Output:
[[[ 1 2] [ 3 4]] [[ 5 6] [ 7 8]] [[ 9 10] [11 12]]]
Example 3
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(3, 2, 2).transpose() print(newarr)
Output:
[[[ 1 5 9] [ 3 7 11]] [[ 2 6 10] [ 4 8 12]]]
Example 4
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(-1, 2).T.reshape(-1, 3, 4) print(newarr)
Output:
[[[ 1 3 5 7] [ 9 11 2 4] [ 6 8 10 12]]]
20检查 NumPy 数组是否为空
import numpy as np the_array = np.array([]) is_empty = the_array.size == 0 print(is_empty) the_array = np.array([1, 2, 3]) is_empty = the_array.size == 0 print(is_empty)
Output:
True False
21在 Python 中重塑 3D 数组
Example 1
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(2, 3, 2) print(newarr)
Output:
[[[ 1 2] [ 3 4] [ 5 6]] [[ 7 8] [ 9 10] [11 12]]]
Example 2
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(3, 2, 2) print(newarr)
Output:
[[[ 1 2] [ 3 4]] [[ 5 6] [ 7 8]] [[ 9 10] [11 12]]]
Example 3
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(3, 2, 2).transpose() print(newarr)
Output:
[[[ 1 5 9] [ 3 7 11]] [[ 2 6 10] [ 4 8 12]]]
Example 4
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(-1, 2).T.reshape(-1, 3, 4) print(newarr)
Output:
[[[ 1 3 5 7] [ 9 11 2 4] [ 6 8 10 12]]]
22在 Python 中重复 NumPy 数组中的一列
import numpy as np the_array = np.array([1, 2, 3]) repeat = 3 new_array = np.transpose([the_array] * repeat) print(new_array)
Output:
[[1 1 1] [2 2 2] [3 3 3]]
23在 NumPy 数组中找到跨维度的平均值
import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) mean_array = the_array.mean(axis=0) print(mean_array)
Output:
[3. 4. 5. 6.]
24检查 NumPy 数组中的 NaN 元素
import numpy as np the_array = np.array([np.nan, 2, 3, 4]) array_has_nan = np.isnan(the_array).any() print(array_has_nan) the_array = np.array([1, 2, 3, 4]) array_has_nan = np.isnan(the_array).any() print(array_has_nan)
Output:
True False
25格式化 NumPy 数组的打印方式
Example 1
import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3) print(x) print(np.array_str(x, precision=1, suppress_small=True))
Output:
[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]] [[1.1 0.9 0. ] [1.1 0.9 0. ] [1.1 0.9 0. ]]
Example 2
import numpy as np x = np.random.random(10) print(x) np.set_printoptions(precision=3) print(x)
Output:
[0.53828153 0.75848226 0.50046312 0.94723558 0.50415632 0.13899663 0.80301141 0.40887872 0.24837485 0.83008548] [0.538 0.758 0.5 0.947 0.504 0.139 0.803 0.409 0.248 0.83 ]
Example 3
import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3) print(x) np.set_printoptions(suppress=True) print(x)
Output:
[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]] [[1.1 0.9 0.000001] [1.1 0.9 0.000001] [1.1 0.9 0.000001]]
Example 4
import numpy as np x = np.array([[1.1, 0.9, 1e-6]] * 3) print(x) np.set_printoptions(formatter={'float': '{: 0.3f}'.format}) print(x)
Output:
[[1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06] [1.1e+00 9.0e-01 1.0e-06]] [[ 1.100 0.900 0.000] [ 1.100 0.900 0.000] [ 1.100 0.900 0.000]]
Example 5
import numpy as np x = np.random.random((3, 3)) * 9 print(np.array2string(x, formatter={'float_kind': '{0:.3f}'.format}))
Output:
[[3.479 1.490 5.674] [6.043 7.025 1.597] [0.261 8.530 2.298]]
26乘以Numpy数组的每个元素
Example 1
import numpy as np the_array = np.array([[1, 2, 3], [1, 2, 3]]) prod = np.prod(the_array) print(prod)
Output:
36
Example 2
import numpy as np the_array = np.array([[1, 2, 3], [1, 2, 3]]) prod = np.prod(the_array, 0) print(prod)
Output:
[1 4 9]
Example 3
import numpy as np the_array = np.array([[1, 2, 3], [1, 2, 3]]) prod = np.prod(the_array, 1) print(prod)
Output:
[6, 6]
Example 4
import numpy as np the_array = np.array([1, 2, 3]) prod = np.prod(the_array) print(prod)
Output:
6
27在 NumPy 中生成随机数
Example 1
import numpy as np # create 2D array the_array = np.arange(50).reshape((5, 10)) # row manipulation np.random.shuffle(the_array) # display random rows rows = the_array[:2, :] print(rows)
Output:
[[10 11 12 13 14 15 16 17 18 19] [ 0 1 2 3 4 5 6 7 8 9]]
Example 2
import random import numpy as np # create 2D array the_array = np.arange(16).reshape((4, 4)) # row manipulation rows_id = random.sample(range(0, the_array.shape[1] - 1), 2) # display random rows rows = the_array[rows_id, :] print(rows)
Output:
[[ 4 5 6 7] [ 8 9 10 11]]
Example 3
import numpy as np # create 2D array the_array = np.arange(16).reshape((4, 4)) number_of_rows = the_array.shape[0] random_indices = np.random.choice(number_of_rows, size=2, replace=False) # display random rows rows = the_array[random_indices, :] print(rows)
Output:
[[ 4 5 6 7] [ 8 9 10 11]]
28Numpy 将具有 8 个元素的一维数组转换为 Python 中的二维数组
4 行 2 列
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(4, 2) print(newarr)
Output:
[[1 2] [3 4] [5 6] [7 8]]
2 行 4 列
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(2, 4) print(newarr)
Output:
[[1 2 3 4] [5 6 7 8]]
29在 Python 中使用 numpy.all()
import numpy as np thelist = [[True, True], [True, True]] thebool = np.all(thelist) print(thebool) thelist = [[False, False], [False, False]] thebool = np.all(thelist) print(thebool) thelist = [[True, False], [True, False]] thebool = np.all(thelist) print(thebool)
Output:
True
30将一维数组转换为二维数组
4 行 2 列
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(4, 2) print(newarr)
Output:
[[1 2] [3 4] [5 6] [7 8]]
2 行 4 列
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(2, 4) print(newarr)
Output:
[[1 2 3 4] [5 6 7 8]]
Example 3
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = np.reshape(arr, (-1, 2)) print(newarr)
Output:
[[1 2] [3 4] [5 6] [7 8]]
通过添加新轴将一维数组转换为二维数组
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = np.reshape(arr, (1, arr.size)) print(newarr)
Output:
[[1 2 3 4 5 6 7 8]]
Example 5
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = np.reshape(arr, (-1, 4)) print(newarr)
Output:
[[1 2 3 4] [5 6 7 8]]
31计算 NumPy 数组中唯一值的频率
import numpy as np the_array = np.array([9, 7, 4, 7, 3, 5, 9]) frequencies = np.asarray((np.unique(the_array, return_counts=True))).T print(frequencies)
Output:
[[3 1] [4 1] [5 1] [7 2] [9 2]]
32在一列中找到平均值
import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) mean_array = the_array.mean(axis=0) print(mean_array)
Output:
[3. 4. 5. 6.]
33在 Numpy 数组的长度、维度、大小
Example 1
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) print(arr.ndim) print(arr.shape) arr = np.array([[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]]) print(arr.ndim) print(arr.shape) arr = np.array([[[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]]]) print(arr.ndim) print(arr.shape)
Output:
1 (12,) 2 (3, 4) 3 (1, 3, 4)
Example 2
import numpy as np arr = np.array([[1, 1, 1, 0], [0, 5, 0, 1], [2, 1, 3, 10]]) print(np.info(arr))
Output:
class: ndarray shape: (3, 4) strides: (16, 4) itemsize: 4 aligned: True contiguous: True fortran: False data pointer: 0x25da9fd5710 byteorder: little byteswap: False type: int32 None
34在 NumPy 数组中找到最大值的索引
import numpy as np the_array = np.array([11, 22, 53, 14, 15]) max_index_col = np.argmax(the_array, axis=0) print(max_index_col)
Output:
2
35按降序对 NumPy 数组进行排序
按降序对 Numpy 进行排序
import numpy as np the_array = np.array([49, 7, 44, 27, 13, 35, 71]) sort_array = np.sort(the_array)[::-1] print(sort_array)
Output:
[71 49 44 35 27 13 7]
按降序对 2D Numpy 进行排序
import numpy as np the_array = np.array([[49, 7, 4], [27, 13, 35]]) sort_array = np.sort(the_array)[::1] print(sort_array)
Output:
[[ 4 7 49] [13 27 35]]
按降序对 Numpy 进行排序
import numpy as np the_array = np.array([[49, 7, 4], [27, 13, 35], [12, 3, 5]]) a_idx = np.argsort(-the_array) sort_array = np.take_along_axis(the_array, a_idx, axis=1) print(sort_array)
Output:
[[49 7 4] [35 27 13] [12 5 3]]
36Numpy 从二维数组中获取随机的一组行
Example 1
import numpy as np # create 2D array the_array = np.arange(50).reshape((5, 10)) # row manipulation np.random.shuffle(the_array) # display random rows rows = the_array[:2, :] print(rows)
Output:
[[10 11 12 13 14 15 16 17 18 19] [ 0 1 2 3 4 5 6 7 8 9]]
Example 2
import random import numpy as np # create 2D array the_array = np.arange(16).reshape((4, 4)) # row manipulation rows_id = random.sample(range(0, the_array.shape[1] - 1), 2) # display random rows rows = the_array[rows_id, :] print(rows)
Output:
[[ 4 5 6 7] [ 8 9 10 11]]
Example 3
import numpy as np # create 2D array the_array = np.arange(16).reshape((4, 4)) number_of_rows = the_array.shape[0] random_indices = np.random.choice(number_of_rows, size=2, replace=False) # display random rows rows = the_array[random_indices, :] print(rows)
Output:
[[ 4 5 6 7] [ 8 9 10 11]]
37将 Numpy 数组转换为 JSON
import numpy as np the_array = np.array([[49, 7, 44], [27, 13, 35], [27, 13, 35]]) lists = the_array.tolist() print([{'x': x[0], 'y': x[1], 'z': x[2]} for i, x in enumerate(lists)])
Output:
[{'x': 49, 'y': 7, 'z': 44}, {'x': 27, 'y': 13, 'z': 35}, {'x': 27, 'y': 13, 'z': 35}]
38检查 NumPy 数组中是否存在值
import numpy as np the_array = np.array([[1, 2], [3, 4]]) n = 3 if n in the_array: print(True) else: print(False)
Output:
True False
39创建一个 3D NumPy 数组
import numpy as np the_3d_array = np.ones((2, 2, 2)) print(the_3d_array)
Output:
[[[1. 1.] [1. 1.]] [[1. 1.] [1. 1.]]]
40在numpy中将字符串数组转换为浮点数数组
import numpy as np string_arr = np.array(['1.1', '2.2', '3.3']) float_arr = string_arr.astype(np.float64) print(float_arr)
Output:
[1.1 2.2 3.3]
41从 Python 的 numpy 数组中随机选择
Example 1
import numpy as np # create 2D array the_array = np.arange(50).reshape((5, 10)) # row manipulation np.random.shuffle(the_array) # display random rows rows = the_array[:2, :] print(rows)
Output:
[[10 11 12 13 14 15 16 17 18 19] [ 0 1 2 3 4 5 6 7 8 9]]
Example 2
import random import numpy as np # create 2D array the_array = np.arange(16).reshape((4, 4)) # row manipulation rows_id = random.sample(range(0, the_array.shape[1] - 1), 2) # display random rows rows = the_array[rows_id, :] print(rows)
Output:
[[ 4 5 6 7] [ 8 9 10 11]]
Example 3
import numpy as np # create 2D array the_array = np.arange(16).reshape((4, 4)) number_of_rows = the_array.shape[0] random_indices = np.random.choice(number_of_rows, size=2, replace=False) # display random rows rows = the_array[random_indices, :] print(rows)
Output:
[[ 4 5 6 7] [ 8 9 10 11]]
42不截断地打印完整的 NumPy 数组
import numpy as np np.set_printoptions(threshold=np.inf) the_array = np.arange(100) print(the_array)
Output:
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99]
43将 Numpy 转换为列表
import numpy as np the_array = np.array([[1, 2], [3, 4]]) print(the_array.tolist())
Output:
[[1, 2], [3, 4]]
44将字符串数组转换为浮点数数组
import numpy as np string_arr = np.array(['1.1', '2.2', '3.3']) float_arr = string_arr.astype(np.float64) print(float_arr)
Output:
[1.1 2.2 3.3]
45计算 NumPy 数组中每一列的总和
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) newarr = arr.reshape(4, 3) print(newarr) column_sums = newarr.sum(axis=0) print(column_sums)
Output:
[[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] [22 26 30]
46使用 Python 中的值创建 3D NumPy 数组
import numpy as np the_3d_array = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) print(the_3d_array)
Output:
[[[1 2] [3 4]] [[5 6] [7 8]]]
47计算不同长度的 Numpy 数组的平均值
import numpy as np x = np.array([[1, 2], [3, 4]]) y = np.array([[1, 2, 3], [3, 4, 5]]) z = np.array([[7], [8]]) arr = np.ma.empty((2, 3, 3)) arr.mask = True arr[:x.shape[0], :x.shape[1], 0] = x arr[:y.shape[0], :y.shape[1], 1] = y arr[:z.shape[0], :z.shape[1], 2] = z print(arr.mean(axis=2))
Output:
[[3.0 2.0 3.0] [4.666666666666667 4.0 5.0]]
48从 Numpy 数组中删除 nan 值
Example 1
import numpy as np x = np.array([np.nan, 2, 3, 4]) x = x[~np.isnan(x)] print(x)
Output:
[2. 3. 4.]
Example 2
import numpy as np x = np.array([ [5, np.nan], [np.nan, 0], [1, 2], [3, 4] ]) x = x[~np.isnan(x).any(axis=1)] print(x)
Output:
[[1. 2.] [3. 4.]]
49向 NumPy 数组添加一列
import numpy as np the_array = np.array([[1, 2], [3, 4]]) columns_to_append = np.array([[5], [6]]) the_array = np.append(the_array, columns_to_append, 1) print(the_array)
Output:
[[1 2 5] [3 4 6]]
50在 Numpy Array 中打印浮点值时如何抑制科学记数法
import numpy as np np.set_printoptions(suppress=True, formatter={'float_kind': '{:f}'.format}) the_array = np.array([3.74, 5162, 13683628846.64, 12783387559.86, 1.81]) print(the_array)
Output:
[3.740000 5162.000000 13683628846.639999 12783387559.860001 1.810000]
51Numpy 将 1d 数组重塑为 1 列的 2d 数组
import numpy as np arr = np.array([1, 2, 3, 4, 5, 6, 7, 8]) newarr = arr.reshape(arr.shape[0], -1) print(newarr)
Output:
[[1] [2] [3] [4] [5] [6] [7] [8]]
52初始化 NumPy 数组
import numpy as np thearray = np.array([[1, 2], [3, 4], [5, 6]]) print(thearray)
Output:
[[1 2] [3 4] [5 6]]
53创建重复一行
import numpy as np the_array = np.array([1, 2, 3]) repeat = 3 new_array = np.tile(the_array, (repeat, 1)) print(new_array)
Output:
[[1 2 3] [1 2 3] [1 2 3]]
54将 NumPy 数组附加到 Python 中的空数组
import numpy as np the_array = np.array([1, 2, 3, 4]) empty_array = np.array([]) new_array = np.append(empty_array, the_array) print(new_array)
Output:
[1. 2. 3. 4.]
55找到 Numpy 数组的平均值
计算每列的平均值
import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) mean_array = the_array.mean(axis=0) print(mean_array)
Output:
[3. 4. 5. 6.]
计算每一行的平均值
import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) mean_array = the_array.mean(axis=1) print(mean_array)
Output:
[2.5 6.5]
仅第一列的平均值
import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) mean_array = the_array[:, 0].mean() print(mean_array)
Output:
3.0
仅第二列的平均值
import numpy as np the_array = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) mean_array = the_array[:, 0].mean() print(mean_array)
Output:
4.0
56检测 NumPy 数组是否包含至少一个非数字值
import numpy as np the_array = np.array([np.nan, 2, 3, 4]) array_has_nan = np.isnan(the_array).any() print(array_has_nan) the_array = np.array([1, 2, 3, 4]) array_has_nan = np.isnan(the_array).any() print(array_has_nan)
Output:
True False
57在 Python 中附加 NumPy 数组
import numpy as np the_array = np.array([[0, 1], [2, 3]]) row_to_append = np.array([[4, 5]]) the_array = np.append(the_array, row_to_append, 0) print(the_array) print('*' * 10) columns_to_append = np.array([[7], [8], [9]]) the_array = np.append(the_array, columns_to_append, 1) print(the_array)
Output:
[[0 1] [2 3] [4 5]] ********** [[0 1 7] [2 3 8] [4 5 9]]
58使用 numpy.any()
import numpy as np thearr = [[True, False], [True, True]] thebool = np.any(thearr) print(thebool) thearr = [[False, False], [False, False]] thebool = np.any(thearr) print(thebool)
Output:
True False
59获得 NumPy 数组的转置
import numpy as np the_array = np.array([[1, 2], [3, 4]]) print(the_array) print(the_array.T)
Output:
[[1 2] [3 4]] [[1 3] [2 4]]
60获取和设置NumPy数组的数据类型
import numpy as np type1 = np.array([1, 2, 3, 4, 5, 6]) type2 = np.array([1.5, 2.5, 0.5, 6]) type3 = np.array(['a', 'b', 'c']) type4 = np.array(["Canada", "Australia"], dtype='U5') type5 = np.array([555, 666], dtype=float) print(type1.dtype) print(type2.dtype) print(type3.dtype) print(type4.dtype) print(type5.dtype) print(type4)
Output:
int32 float64 <U1 <U5 float64 ['Canad' 'Austr']
61获得NumPy数组的形状
import numpy as np array1d = np.array([1, 2, 3, 4, 5, 6]) array2d = np.array([[1, 2, 3], [4, 5, 6]]) array3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) print(array1d.shape) print(array2d.shape) print(array3d.shape)
Output:
(6,) (2, 3) (2, 2, 3)
62获得 1、2 或 3 维 NumPy 数组
import numpy as np array1d = np.array([1, 2, 3, 4, 5, 6]) print(array1d.ndim) # 1 array2d = np.array([[1, 2, 3], [4, 5, 6]]) print(array2d.ndim) # 2 array3d = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) array3d = array3d.reshape(2, 3, 2) print(array3d.ndim) # 3
Output:
1 2 3
63重塑 NumPy 数组
import numpy as np thearray = np.array([1, 2, 3, 4, 5, 6, 7, 8]) thearray = thearray.reshape(2, 4) print(thearray) print("-" * 10) thearray = thearray.reshape(4, 2) print(thearray) print("-" * 10) thearray = thearray.reshape(8, 1) print(thearray)
Output:
[[1 2 3 4] [5 6 7 8]] ---------- [[1 2] [3 4] [5 6] [7 8]] ---------- [[1] [2] [3] [4] [5] [6] [7] [8]]
64调整 NumPy 数组的大小
import numpy as np thearray = np.array([1, 2, 3, 4, 5, 6, 7, 8]) thearray.resize(4) print(thearray) print("-" * 10) thearray = np.array([1, 2, 3, 4, 5, 6, 7, 8]) thearray.resize(2, 4) print(thearray) print("-" * 10) thearray = np.array([1, 2, 3, 4, 5, 6, 7, 8]) thearray.resize(3, 3) print(thearray)
Output:
[1 2 3 4] ---------- [[1 2 3 4] [5 6 7 8]] ---------- [[1 2 3] [4 5 6] [7 8 0]]
65将 List 或 Tuple 转换为 NumPy 数组
import numpy as np thelist = [1, 2, 3] print(type(thelist)) # <class 'list'> array1 = np.array(thelist) print(type(array1)) # <class 'numpy.ndarray'> thetuple = ((1, 2, 3)) print(type(thetuple)) # <class 'tuple'> array2 = np.array(thetuple) print(type(array2)) # <class 'numpy.ndarray'> array3 = np.array([thetuple, thelist, array1]) print(array3)
Output:
<class 'list'> <class 'numpy.ndarray'> <class 'tuple'> <class 'numpy.ndarray'> [[1 2 3] [1 2 3] [1 2 3]]
66使用 arange 函数创建 NumPy 数组
import numpy as np array1d = np.arange(5) # 1 row and 5 columns print(array1d) array1d = np.arange(0, 12, 2) # 1 row and 6 columns print(array1d) array2d = np.arange(0, 12, 2).reshape(2, 3) # 2 rows 3 columns print(array2d) array3d = np.arange(9).reshape(3, 3) # 3 rows and columns print(array3d)
Output:
[0 1 2 3 4] [ 0 2 4 6 8 10] [[ 0 2 4] [ 6 8 10]] [[0 1 2] [3 4 5] [6 7 8]]
67使用 linspace() 创建 NumPy 数组
import numpy as np array1d = np.linspace(1, 12, 2) print(array1d) array1d = np.linspace(1, 12, 4) print(array1d) array2d = np.linspace(1, 12, 12).reshape(4, 3) print(array2d)
Output:
[ 1. 12.] [ 1. 4.66666667 8.33333333 12. ] [[ 1. 2. 3.] [ 4. 5. 6.] [ 7. 8. 9.] [10. 11. 12.]]
68NumPy 日志空间数组示例
import numpy as np thearray = np.logspace(5, 10, num=10, base=10000000.0, dtype=float) print(thearray)
Output:
[1.00000000e+35 7.74263683e+38 5.99484250e+42 4.64158883e+46 3.59381366e+50 2.78255940e+54 2.15443469e+58 1.66810054e+62 1.29154967e+66 1.00000000e+70]
69创建 Zeros NumPy 数组
import numpy as np array1d = np.zeros(3) print(array1d) array2d = np.zeros((2, 4)) print(array2d)
Output:
[0. 0. 0.] [[0. 0. 0. 0.] [0. 0. 0. 0.]]
70NumPy One 数组示例
import numpy as np array1d = np.ones(3) print(array1d) array2d = np.ones((2, 4)) print(array2d)
Output:
[1. 1. 1.] [[1. 1. 1. 1.] [1. 1. 1. 1.]]
71NumPy 完整数组示例
import numpy as np array1d = np.full((3), 2) print(array1d) array2d = np.full((2, 4), 3) print(array2d)
Output:
[2 2 2] [[3 3 3 3] [3 3 3 3]]
72NumPy Eye 数组示例
import numpy as np array1 = np.eye(3, dtype=int) print(array1) array2 = np.eye(5, k=2) print(array2)
Output:
[[1 0 0] [0 1 0] [0 0 1]] [[0. 0. 1. 0. 0.] [0. 0. 0. 1. 0.] [0. 0. 0. 0. 1.] [0. 0. 0. 0. 0.] [0. 0. 0. 0. 0.]]
73NumPy 生成随机数数组
import numpy as np print(np.random.rand(3, 2)) # Uniformly distributed values. print(np.random.randn(3, 2)) # Normally distributed values. # Uniformly distributed integers in a given range. print(np.random.randint(2, size=10)) print(np.random.randint(5, size=(2, 4)))
Output:
[[0.68428242 0.62467648] [0.28595395 0.96066372] [0.63394485 0.94036659]] [[0.29458704 0.84015551] [0.42001253 0.89660667] [0.50442113 0.46681958]] [0 1 1 0 0 0 0 1 0 0] [[3 3 2 3] [2 1 2 0]]
74NumPy 标识和对角线数组示例
import numpy as np print(np.identity(3)) print(np.diag(np.arange(0, 8, 2))) print(np.diag(np.diag(np.arange(9).reshape((3,3)))))
Output:
[[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]] [[0 0 0 0] [0 2 0 0] [0 0 4 0] [0 0 0 6]] [[0 0 0] [0 4 0] [0 0 8]]
75NumPy 索引示例
import numpy as np array1d = np.array([1, 2, 3, 4, 5, 6]) print(array1d[0]) # Get first value print(array1d[-1]) # Get last value print(array1d[3]) # Get 4th value from first print(array1d[-5]) # Get 5th value from last # Get multiple values print(array1d[[0, -1]]) print("-" * 10) array2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(array2d) print("-" * 10) print(array2d[0, 0]) # Get first row first col print(array2d[0, 1]) # Get first row second col print(array2d[0, 2]) # Get first row third col print(array2d[0, 1]) # Get first row second col print(array2d[1, 1]) # Get second row second col print(array2d[2, 1]) # Get third row second col
Output:
1 6 4 2 [1 6] ---------- [[1 2 3] [4 5 6] [7 8 9]] ---------- 1 2 3 2 5 8
76多维数组中的 NumPy 索引
import numpy as np array3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]) print(array3d) print(array3d[0, 0, 0]) print(array3d[0, 0, 1]) print(array3d[0, 0, 2]) print(array3d[0, 1, 0]) print(array3d[0, 1, 1]) print(array3d[0, 1, 2]) print(array3d[1, 0, 0]) print(array3d[1, 0, 1]) print(array3d[1, 0, 2]) print(array3d[1, 1, 0]) print(array3d[1, 1, 1]) print(array3d[1, 1, 2])
Output:
[[[ 1 2 3] [ 4 5 6]] [[ 7 8 9] [10 11 12]]] 1 2 3 4 5 6 7 8 9 10 11 12
77NumPy 单维切片示例
import numpy as np array1d = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) print(array1d[4:]) # From index 4 to last index print(array1d[:4]) # From index 0 to 4 index print(array1d[4:7]) # From index 4(included) up to index 7(excluded) print(array1d[:-1]) # Excluded last element print(array1d[:-2]) # Up to second last index(negative index) print(array1d[::-1]) # From last to first in reverse order(negative step) print(array1d[::-2]) # All odd numbers in reversed order print(array1d[-2::-2]) # All even numbers in reversed order print(array1d[::]) # All elements
Output:
[4 5 6 7 8 9] [0 1 2 3] [4 5 6] [0 1 2 3 4 5 6 7 8] [0 1 2 3 4 5 6 7] [9 8 7 6 5 4 3 2 1 0] [9 7 5 3 1] [8 6 4 2 0] [0 1 2 3 4 5 6 7 8 9]
78NumPy 数组中的多维切片
import numpy as np array2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print("-" * 10) print(array2d[:, 0:2]) # 2nd and 3rd col print("-" * 10) print(array2d[1:3, 0:3]) # 2nd and 3rd row print("-" * 10) print(array2d[-1::-1, -1::-1]) # Reverse an array
Output:
---------- [[1 2] [4 5] [7 8]] ---------- [[4 5 6] [7 8 9]] ---------- [[9 8 7] [6 5 4] [3 2 1]]
79翻转 NumPy 数组的轴顺序
import numpy as np array2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(array2d) print("-" * 10) # Permute the dimensions of an array. arrayT = np.transpose(array2d) print(arrayT) print("-" * 10) # Flip array in the left/right direction. arrayFlr = np.fliplr(array2d) print(arrayFlr) print("-" * 10) # Flip array in the up/down direction. arrayFud = np.flipud(array2d) print(arrayFud) print("-" * 10) # Rotate an array by 90 degrees in the plane specified by axes. arrayRot90 = np.rot90(array2d) print(arrayRot90)
Output:
[[1 2 3] [4 5 6] [7 8 9]] ---------- [[1 4 7] [2 5 8] [3 6 9]] ---------- [[3 2 1] [6 5 4] [9 8 7]] ---------- [[7 8 9] [4 5 6] [1 2 3]] ---------- [[3 6 9] [2 5 8] [1 4 7]]
80NumPy 数组的连接和堆叠
import numpy as np array1 = np.array([[1, 2, 3], [4, 5, 6]]) array2 = np.array([[7, 8, 9], [10, 11, 12]]) # Stack arrays in sequence horizontally (column wise). arrayH = np.hstack((array1, array2)) print(arrayH) print("-" * 10) # Stack arrays in sequence vertically (row wise). arrayV = np.vstack((array1, array2)) print(arrayV) print("-" * 10) # Stack arrays in sequence depth wise (along third axis). arrayD = np.dstack((array1, array2)) print(arrayD) print("-" * 10) # Appending arrays after each other, along a given axis. arrayC = np.concatenate((array1, array2)) print(arrayC) print("-" * 10) # Append values to the end of an array. arrayA = np.append(array1, array2, axis=0) print(arrayA) print("-" * 10) arrayA = np.append(array1, array2, axis=1) print(arrayA)
Output:
[[ 1 2 3 7 8 9] [ 4 5 6 10 11 12]] ---------- [[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] ---------- [[[ 1 7] [ 2 8] [ 3 9]] [[ 4 10] [ 5 11] [ 6 12]]] ---------- [[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] ---------- [[ 1 2 3] [ 4 5 6] [ 7 8 9] [10 11 12]] ---------- [[ 1 2 3 7 8 9] [ 4 5 6 10 11 12]]
81NumPy 数组的算术运算
import numpy as np array1 = np.array([[1, 2, 3], [4, 5, 6]]) array2 = np.array([[7, 8, 9], [10, 11, 12]]) print(array1 + array2) print("-" * 20) print(array1 - array2) print("-" * 20) print(array1 * array2) print("-" * 20) print(array2 / array1) print("-" * 40) print(array1 ** array2) print("-" * 40)
Output:
[[ 8 10 12] [14 16 18]] -------------------- [[-6 -6 -6] [-6 -6 -6]] -------------------- [[ 7 16 27] [40 55 72]] -------------------- [[7. 4. 3. ] [2.5 2.2 2. ]] ---------------------------------------- [[ 1 256 19683] [ 1048576 48828125 -2118184960]] ----------------------------------------
82NumPy 数组上的标量算术运算
import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]]) print(array1 + 2) print("-" * 20) print(array1 - 5) print("-" * 20) print(array1 * 2) print("-" * 20) print(array1 / 5) print("-" * 20) print(array1 ** 2) print("-" * 20)
Output:
[[12 22 32] [42 52 62]] -------------------- [[ 5 15 25] [35 45 55]] -------------------- [[ 20 40 60] [ 80 100 120]] -------------------- [[ 2. 4. 6.] [ 8. 10. 12.]] -------------------- [[ 100 400 900] [1600 2500 3600]] --------------------
83NumPy 初等数学函数
import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]]) print(np.sin(array1)) print("-" * 40) print(np.cos(array1)) print("-" * 40) print(np.tan(array1)) print("-" * 40) print(np.sqrt(array1)) print("-" * 40) print(np.exp(array1)) print("-" * 40) print(np.log10(array1)) print("-" * 40)
Output:
[[-0.54402111 0.91294525 -0.98803162] [ 0.74511316 -0.26237485 -0.30481062]] ---------------------------------------- [[-0.83907153 0.40808206 0.15425145] [-0.66693806 0.96496603 -0.95241298]] ---------------------------------------- [[ 0.64836083 2.23716094 -6.4053312 ] [-1.11721493 -0.27190061 0.32004039]] ---------------------------------------- [[3.16227766 4.47213595 5.47722558] [6.32455532 7.07106781 7.74596669]] ---------------------------------------- [[2.20264658e+04 4.85165195e+08 1.06864746e+13] [2.35385267e+17 5.18470553e+21 1.14200739e+26]] ---------------------------------------- [[1. 1.30103 1.47712125] [1.60205999 1.69897 1.77815125]] ----------------------------------------
84NumPy Element Wise 数学运算
import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]]) array2 = np.array([[2, 3, 4], [4, 6, 8]]) array3 = np.array([[-2, 3.5, -4], [4.05, -6, 8]]) print(np.add(array1, array2)) print("-" * 40) print(np.power(array1, array2)) print("-" * 40) print(np.remainder((array2), 5)) print("-" * 40) print(np.reciprocal(array3)) print("-" * 40) print(np.sign(array3)) print("-" * 40) print(np.ceil(array3)) print("-" * 40) print(np.round(array3)) print("-" * 40)
Output:
[[12 23 34] [44 56 68]] ---------------------------------------- [[ 100 8000 810000] [ 2560000 -1554869184 -1686044672]] ---------------------------------------- [[2 3 4] [4 1 3]] ---------------------------------------- [[-0.5 0.28571429 -0.25 ] [ 0.24691358 -0.16666667 0.125 ]] ---------------------------------------- [[-1. 1. -1.] [ 1. -1. 1.]] ---------------------------------------- [[-2. 4. -4.] [ 5. -6. 8.]] ---------------------------------------- [[-2. 4. -4.] [ 4. -6. 8.]] ----------------------------------------
85NumPy 聚合和统计函数
import numpy as np array1 = np.array([[10, 20, 30], [40, 50, 60]]) print("Mean: ", np.mean(array1)) print("Std: ", np.std(array1)) print("Var: ", np.var(array1)) print("Sum: ", np.sum(array1)) print("Prod: ", np.prod(array1))
Output:
Mean: 35.0 Std: 17.07825127659933 Var: 291.6666666666667 Sum: 210 Prod: 720000000
86Where 函数的 NumPy 示例
import numpy as np before = np.array([[1, 2, 3], [4, 5, 6]]) # If element is less than 4, mul by 2 else by 3 after = np.where(before < 4, before * 2, before * 3) print(after)
Output:
[[ 2 4 6] [12 15 18]]
87Select 函数的 NumPy 示例
import numpy as np before = np.array([[1, 2, 3], [4, 5, 6]]) # If element is less than 4, mul by 2 else by 3 after = np.select([before < 4, before], [before * 2, before * 3]) print(after)
Output:
[[ 2 4 6] [12 15 18]]
88选择函数的 NumPy 示例
import numpy as np before = np.array([[0, 1, 2], [2, 0, 1], [1, 2, 0]]) choices = [5, 10, 15] after = np.choose(before, choices) print(after) print("-" * 10) before = np.array([[0, 0, 0], [2, 2, 2], [1, 1, 1]]) choice1 = [5, 10, 15] choice2 = [8, 16, 24] choice3 = [9, 18, 27] after = np.choose(before, (choice1, choice2, choice3)) print(after)
Output:
[[ 5 10 15] [15 5 10] [10 15 5]] ---------- [[ 5 10 15] [ 9 18 27] [ 8 16 24]]
89NumPy 逻辑操作,用于根据给定条件从数组中选择性地选取值
import numpy as np thearray = np.array([[10, 20, 30], [14, 24, 36]]) print(np.logical_or(thearray < 10, thearray > 15)) print("-" * 30) print(np.logical_and(thearray < 10, thearray > 15)) print("-" * 30) print(np.logical_not(thearray < 20)) print("-" * 30)
Output:
[[False True True] [False True True]] ------------------------------ [[False False False] [False False False]] ------------------------------ [[False True True] [False True True]] ------------------------------
90标准集合操作的 NumPy 示例
import numpy as np array1 = np.array([[10, 20, 30], [14, 24, 36]]) array2 = np.array([[20, 40, 50], [24, 34, 46]]) # Find the union of two arrays. print(np.union1d(array1, array2)) # Find the intersection of two arrays. print(np.intersect1d(array1, array2)) # Find the set difference of two arrays. print(np.setdiff1d(array1, array2))
Output:
[10 14 20 24 30 34 36 40 46 50] [20 24] [10 14 30 36]