十分钟,Python 带你看遍世界足球俱乐部沉浮

简介: 十分钟,Python 带你看遍世界足球俱乐部沉浮

作为一名足球迷,在年终盘点中,怎么能少了足球呢。如果你是关注欧洲足球的球迷(没办法,人家欧洲是足球的世界的中心),那么你一定知道,2019年是属于利物浦的一年,不多说,红军的首个英超冠军已经遥遥在望了,fighting!

数据获取

我们还是先来看看如何拿到我们需要的数据呢,我们这里选择的是一个国外的统计网站,可以查看历年的足球俱乐部得分和排名

https://footballdatabase.com/ranking/world/1

获取俱乐部信息

首先我们需要拿到俱乐部相关的信息,这里选取前200名俱乐部,使用 BeautifulSoup 解析网页即可

for name in name_list:
        rank_list = []
        try:
            rank_point = name.find_all('td', attrs={'class': 'rank'})
            rank = rank_point[0].text
            point = rank_point[1].text
            club_info = name.find('td', attrs={'class': 'club text-left'}).find_all('a')
            club_url = club_info[0]['href']
            club_name = club_info[0].find('div', attrs={'class': 'limittext'}).text
            club_country_url = club_info[1]['href']
            club_country_name = club_info[1].text
            rank_list.append([rank, club_name, club_country_name, club_url, club_country_url, point])
            list_rank.append(rank_list)
            save_club_name(rank_list)
        except:
            pass

拿到各个俱乐部的信息后,就可以遍历该列表,获取俱乐部历年的得分和排名数据

获取俱乐部历史数据

俱乐部的历史数据也是保存在网页的 Javascript 变量中的,对于如何获取这种数据,我们在前面的文章中也都有介绍,这里就不过多赘述了

his_rank_list = []
    for data in data_list:
        print(data)
        url = data[0][3]
        his_res = requests.get(base_url + url)
        his_content = BeautifulSoup(his_res.text, "html.parser")
        js = his_content.find_all('script')[1].string
        src_text = js2xml.parse(js)
        src_tree = js2xml.pretty_print(src_text)
        data_tree = BeautifulSoup(src_tree, 'html.parser')
        array_list = data_tree.find_all('array')
        club_name = data[0][1]
        for array in array_list[2:-2]:
            his_rank_list = []
            array_date = array.find('string').text
            date = array_date
            try:
                month = month_map[array_date.split(' ')[0]]
                year = array_date.split(' ')[1]
                date = str(year) + '-' + str(month)
            except:
                pass
            array_data = array.find_all('number')
            try:
                point = array_data[0]['value']
                rank = array_data[1]['value']
                his_rank_list.append([rank, point, date])
                save_his_data(club_name, his_rank_list)
            except:
                raise

这样我们就可以得到两个文件,分别是 club_data.csv 和 rank_his_data.csv

俱乐部排行

我们这里整理的当前世界俱乐部前20的排名,可以看到利物浦以2120分高居榜首,曼城则紧随其后,看来世界第一联赛还是很给力的!

接下来就是西超的巴塞和德甲霸主拜仁,在意甲实现了八连冠的老夫人以及无敌于法甲的大巴黎。

欧洲五大联赛,名不虚传

怎么样,快来看看有没有你熟悉的队徽上榜呢!

国家分布

下面我们再来看看哪些国家的俱乐部最多呢,首先是前20名的国家分布

可以看到,英格兰和西班牙的俱乐部最多,都有4家上榜,而次之的是意大利以及德国,都是3家,这四个国家就占去了大半。而唯一一家非欧洲的俱乐部则位于巴西,足球王国也是要面子的哇!

我们再把榜单扩大到所有的抓取数据,即前200名的俱乐部数据

西班牙的俱乐部最多,达到了20家,其次是英格兰也有17家之多。这些年西甲英超的球队垄断欧冠冠军,还是有其深厚的足球底蕴作为依托的!

而欧洲传统足球强国西班牙、英格兰、德国、法国以及意大利再加上南美双珠阿根廷和巴西,这七大豪强的俱乐部基本占据了榜单的半壁江山,足球的格局,从来如此!

当然中超也有两家上榜俱乐部,分别是133名的上海上港和166名的广州恒大,任重而道远呐!

top7 排名走势

这七家俱乐部既有欧陆的传统豪门,也有金元新秀,都是当今俱乐部中的顶级强队。

我们可以看出,对于“皇萨仁”来说,它们的成绩都是极其稳定的,常年处于极高的竞技水平上。而当红的利物浦则在本世纪初的前十年遭遇到了低谷,一路前行,着实不易。

再有就是金元足球的代表大巴黎和蓝月亮,其中大巴黎尤为明显,从2011年开始,得益于卡塔尔财团的进入,其排名开始急速攀升,在世界范围内的影响力也大幅提高,战绩更是不断突破,常年垄断法甲冠军,不过对于欧冠赛场,巴黎还有很长的路要走。

而对于老牌劲旅尤文图斯,相信大家都会想起著名的“电话门”事件,此事件之后,不仅尤文图斯跌落低谷,就连意大利足球,曾经的亚平宁联赛的风采,都一去不复返了。不过从2011年开始,尤文走在了复兴的路上,也扛起了意大利足球的大旗!

各大洲排名

我们从上面的排名不难看出,所谓的世界排名,其实大多是欧洲俱乐部,那么其他大洲的俱乐部呢,我们一起来看下。

亚洲

非洲

南美洲

最后还是来看看近十年世界足球俱乐部排行的变化情况

转眼间快到春节了,在这里预祝各位小伙伴儿们春节快乐!

这篇文章可能是春节前的最后一篇原了,由于本人水平一般,能力有限,写原创真是不易,大家且看且珍惜吧。如果觉得还可以,就点点“在看”,以资鼓励,谢谢!

相关文章
|
4月前
|
索引 Python
十分钟学习Python异常处理
在编程过程中,错误和异常是不可避免的。Python提供了强大的异常处理机制,帮助我们捕获和处理运行时错误,使程序更加健壮和可靠。本文将带你在十分钟内快速掌握Python的异常处理基础知识。
|
4月前
|
存储 人工智能 数据挖掘
十分钟学习Python基础知识
Python是一种高效、易学且功能强大的编程语言,广泛应用于数据分析、人工智能、Web开发等领域。如果你是编程新手,想要快速入门Python,那么这篇文章将是你的最佳选择。我将在十分钟内带你了解Python的基础知识。
|
6月前
|
数据采集 Web App开发 搜索推荐
十分钟带你搞懂Python那啥
十分钟带你搞懂Python那啥
44 0
|
Python
基于python快速开发足球游戏代码记录
基于python快速开发足球游戏代码记录
116 0
基于python快速开发足球游戏代码记录
|
监控 Shell 持续交付
强大的 Python 任务自动化工具!invoke 十分钟入门指南
invoke 是从著名的远程部署工具 Fabric 中分离出来的,它与 paramiko 一起是 Fabric 的两大最核心的基础组件。
518 0
|
数据采集 C++ Python
Python十分钟制作属于你自己的个性logo
词云的使用相信大家已经不陌生了,使用很简单,直接调用wordcloud包就可以了。它的主要功能是根据文本词汇和词汇频率生成图片,从中可以直观的看出各个词汇所占比重。最近正好想做一个人的logo,于是乎决定使用词云来制作完成。
Python十分钟制作属于你自己的个性logo
|
Python
转载:Python十分钟入门
    Python十分钟入门:http://python.jobbole.com/23425/
896 0
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!