AI学术交流——“人工智能”和“神经网络学习”

简介: AI学术交流——“人工智能”和“神经网络学习”



前言

本章将会讲解AI中人工智能与神经网络的学习,了解人工智能的发展史,与神经网络。

一.人工智能

1.“人工智能之父”

艾伦·麦席森·图灵

英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。

图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。

约翰·麦卡锡

他因在人工智能领域的贡献而在1971年获得图灵奖。他在1956年的达特矛斯会议上提出了“人工智能”一词,并被誉为人工智能之父,并将数学逻辑应用到了人工智能的早期形成中。麦卡锡在1958年发明了LISP语言(该语言至今仍在人工智能领域广泛使用)并于1960年将其设计发表在《美国计算机学会通讯》上。

马文·明斯基

“人工智能之父”和框架理论的创立者。1956年,和麦卡锡(J.McCarthy)一起发起“达特茅斯会议”并提出人工智能(Artificial Intelligence)概念的计算机科学家马文·明斯基(Marvin Lee Minsky)被授予了1969年度图灵奖,是第一位获此殊荣的人工智能学者。

西摩尔·派普特

人工智能发展的其中一位先驱。他对智力的观点主要来自让·皮亚杰的影响。他在1968年从LISP语言的基础里创立Logo程序语言。

2.达特茅斯会议(人工智能起源)

人工智能的诞生,可以追溯到1956年的达特茅斯会议。

在这次会议生,聚集了计算机科学领域的一些顶尖科学家,包括约翰 ・麦卡锡,马文・闵斯基,克劳德・香农等。

这些人视图研究一种东西,这种东西能够思考和学习,甚至是超过人类的智慧。他们将这种东西定义为“人工智能”。

在这个会议完成后,一场关于人工智能的革命就开始了。

人工智能一路走来,经历了多次高潮和低谷,特别是20世纪80年代的“AI寒冬”。但是随着计算能力的提高和算法的进步,人工智能再次得以发展。

3.人工智能重要节点

直到2023年,有一些人类说AI已经拥有了超越他们的智慧,但是AI无非就是在某些方面比人类更加高效罢了。


二.神经网络

让以chatGPT为代表的硅基能够前进到今天,有两个技术至关重要:一个是神经网络,另一个就是深度学习。两种的结合,奠定了硅基发展的走向。接下来我们就先来讲一下神经网络。


1.什么是神经网络

神经网络又称人工神经网络 (ANN) 或模拟神经网络 (SNN),是机器学习的子集,同时也是深度学习算法的核心。其名称和结构均受到人脑的启发,可模仿生物神经元相互传递信号的方式。

人工神经网络 (ANN) 由节点层组成,包含一个输入层、一个或多个隐藏层和一个输出层。每个节点也称为一个人工神经元,它们连接到另一个节点,具有相关的权重和阈值。如果任何单个节点的输出高于指定的阈值,那么会激活该节点,并将数据发送到网络的下一层。否则,不会将数据传递到网络的下一层。神经网络依靠训练数据来学习,并随时间推移提高自身准确性


2.神经网络简单结构

 


3.为什么要学习人类的神经网络

人工智能研究者们认为,人类的大脑就是世界上最大的计算机。那么,人类大脑这台计算机到底有多强大?

(1)人类大脑:

  • (1)人类大脑的总重量为1.3-1.4千克
  • (2)大脑包含约1000亿个神经元,神经元之间形成数以千计的神经网络。
  • (3)人脑每秒可以处理约10的16次方个操作。
  • (4)人脑能耗非常低,仅为20瓦左右,相当于一盏电灯泡的功率。

(2)人类大脑与人工智能神经网络相似之处

  • (1)都是由神经元构成
  • (2)可以进行学习适应新环境
  • (3)可以处理大量信息
  • (4)有记忆和预测功能

(3)人类大脑与人工智能神经网络不同之处

  • (1)神经网络学习速度快于大脑。
  • (2)神经网络存储容量小于大脑。
  • (3)神经网络决策过程通过计算大脑通过综合决策。
  • (4)神经网络存储通过硬盘大脑存储通过神经元。

4.不同类型的神经网络

(1)前馈神经网络

前馈神经网络(feedforward neural network)是一种最简单的神经网络结构,由最基本的神经元堆叠而成,信息从输入层开始,逐层向一个方向传递,即单向传递,一直到输出层结束。前馈神经网络由一个或多个线性变换和非线性激活函数组成。前馈神经网络是应用最广泛、发展最迅速的人工神经网络之一。

(2) 反馈神经网络

反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。

(3) 卷积神经网络

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络需要考虑的参数更少,使之成为一种颇具吸引力的深度学习结构 。

(4)递归神经网络

递归神经网络(Recurrent Neural Network,RNN)是一种前馈神经网络,它的神经元可以响应先前的状态和输入信息,对于序列数据处理有出色表现。递归神经网络由循环层构成,每个循环层的输出被送到下一个循环层的输入中。这使得递归神经网络可以利用序列信息。与其他深度学习结构相比,递归神经网络需要考虑的参数更少,使之成为一种颇具吸引力的深度学习结构。

 


创作不易,求关注,点赞,收藏,谢谢~   

目录
相关文章
|
28天前
|
人工智能 运维 算法
AI来了,运维不慌:教你用人工智能把团队管理提速三倍!
AI来了,运维不慌:教你用人工智能把团队管理提速三倍!
252 8
|
1月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
241 120
|
1月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
177 6
|
1月前
|
人工智能 并行计算 PyTorch
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
以Lama Cleaner的AI去水印工具理解人工智能中经常会用到GPU来计算的CUDA是什么? 优雅草-卓伊凡
196 4
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI能帮我们读懂心事吗?——聊聊人工智能在精神疾病早期诊断中的探索
AI能帮我们读懂心事吗?——聊聊人工智能在精神疾病早期诊断中的探索
90 5
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
拔俗AI学伴智能体系统:基于大模型与智能体架构的下一代个性化学习引擎
AI学伴智能体系统融合大模型、多模态理解与自主决策,打造具备思考能力的个性化学习伙伴。通过动态推理、长期记忆、任务规划与教学逻辑优化,实现千人千面的自适应教育,助力因材施教落地,推动教育公平与效率双提升。(238字)
|
1月前
|
机器学习/深度学习 人工智能 监控
上海拔俗AI软件定制:让技术真正为你所用,拔俗网络这样做
在上海,企业正通过AI软件定制破解通用化难题。该模式以业务场景为核心,量身打造智能解决方案,涵盖场景化模型开发、模块化架构设计与数据闭环优化三大技术维度,推动技术与业务深度融合,助力企业实现高效、可持续的数字化转型。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
拔俗AI人工智能评审管理系统:用技术为决策装上“智能导航”
AI评审系统融合NLP、知识图谱与机器学习,破解传统评审效率低、标准不一难题。通过语义解析、智能推理与风险预判,构建标准化、可复用的智能评审流程,助力项目质量与效率双提升。(238字)
|
1月前
|
人工智能 Kubernetes Cloud Native
Higress(云原生AI网关) 架构学习指南
Higress 架构学习指南 🚀写在前面: 嘿,欢迎你来到 Higress 的学习之旅!
413 0

热门文章

最新文章