【Python】初学者也可以实现的人脸识别系统-0x1

简介: 【Python】初学者也可以实现的人脸识别系统-0x1
  • 作者:20岁爱吃必胜客(坤制作人),近十年开发经验, 跨域学习者,目前于海外某世界知名高校就读计算机相关专业。
  • 荣誉:阿里云博客专家认证、腾讯开发者社区优质创作者,在CTF省赛校赛多次取得好成绩。
  • 跨领域学习,喜欢摄影、弹吉他、咏春拳。文章深入浅出、语言风趣;爱吃必胜客社区创立者,旨在“发现美 欣赏美



⭐️前言

人脸识别那么常用,为什么不自己手写一个呢?

日常生活中我们喜欢的就可以拿python写出来了,不要放弃,python很简单,很多时候我们可以先调用别人的API实现出来。

🌟 做什么

人脸识别拿来做个门禁系统、考勤系统、报警系统。

🌟 准备

☀️安装python,毫无疑问

https://www.python.org/

复制此链接到浏览器,下载安装吧!

☀️安装pycharm

这个是个付费软件,非常好用。

但是我们可以去pdd搜索pycharm安装,这样就可以几分钱安装永久免费版了。

☀️环境:Opencv模块

我们可以先下载丐版的用着,丐版下载也很容易,直接打开cmd,输入即可下载

自带乞丐版安装方法

满血版在官网下载opencv

毫无疑问,功能更全面。

注意事项:

安装的时候是 opencv_python,但在导入的时候采用 import cv2

# 导入cv模块
import cv2 as cv

⭐️做法

🌟 原理

  • 滑动窗口机制
  • 级联分类器
  • 特征分类器

别看了,太麻烦了,我们就写个人脸识别至于吗?

我们就先用上再说,光简单介绍一下意图让大家明白就够了,我觉得。

🌟 第一步:读取图片

当然要先读取到图片才能去处理图片,所以万事第一步,先读取到我们的图片。

☀️步骤

  1. 导入cv模块
  2. 读取图片
  3. 显示图片
  4. 等待一小下,不然图片一闪而过
  5. 释放内存

☀️代码

创建个文件,打上这些代码。不会的看上图。

# 导入cv模块
import cv2 as cv
# 读取图片
img = cv.imread("5a131e6fcaf97e615aeaef854cabf65.jpg")
# 显示图片
cv.imshow("read_img",img)
# 等待一小下,不然图片一闪而过
cv.waitKey(0)
# 释放内存
cv.destroyAllWindows()

🌟 第二步:灰度转换

☀️为什么进行灰度转换?

毫无疑问,彩色电视确实更好看,但是也难造啊。我们造不了彩电的时候,先做成黑白电视。

我们现在人工智能很厉害,但是还没进化到大彩电级别。我们先从黑白电视开始,黑白的图片数据更好处理啊

你说对吗?

我觉得OK。

☀️步骤

大公司给我们写好了,一个调用搞定。

我们有opencv这个工具怕什么,嘿嘿。

☀️代码

cv.cvtColor(img,cv.COLOR_BGR2GRAY)这个函数直接搞定

# 导入cv模块
import cv2 as cv
# 读取图片
img = cv.imread("5a131e6fcaf97e615aeaef854cabf65.jpg")
# 灰度转换
gray_img=cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 显示灰度
cv.imshow('gray',gray_img)
#保存灰度图片
cv.imwrite('gray_face11.jpg',img)
# 显示图片
cv.imshow("read_img",img)
# 等待一小下,不然图片一闪而过
cv.waitKey(0)
# 释放内存
cv.destroyAllWindows()

⭐️总结

这些就是我们要做一个人脸识别的前期工作。

要把数据尽量地裁剪、简化。

方便计算机处理。

我们让程序可以读取图片,把彩的图片转成黑白的,尺寸标准化

下一篇开始,我们让我们的程序可以干活,可以人脸检测!

跟上坤哥的节奏!

🌟 一个故事

python学习之路任重而道远,要想学完说容易也容易,说难也难。 很多人说python最好学了,但扪心自问,你会用python做什么了?

刚开始在大学学习c语言,写一个飞行棋的小游戏,用dos界面来做,真是出力不讨好。 地图要自己一点一点画出来,就像这样:

================
|       |
|       |
|===============
从此讨厌编程,不想继续学下去。每次作业应付。
算法考试,数据结构考试随便背代码,只求通过。
最后呢?我学会变成了吗?只能对一些概念侃侃而谈,但真的会几行代码,能写出实用工具吗?
答案变得模糊。
所以我们要从现在开始,学好python,不要再糊弄下去!!!

相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
1月前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
2月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
132 66
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
1月前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
32 3
|
2月前
|
机器学习/深度学习 算法 前端开发
基于Python深度学习的果蔬识别系统实现
果蔬识别系统,主要开发语言为Python,基于TensorFlow搭建ResNet卷积神经网络算法模型,通过对12种常见的果蔬('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜')图像数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django框架搭建Web网页端可视化操作界面,以下为项目实现介绍。
69 4
基于Python深度学习的果蔬识别系统实现
|
2月前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
64 5

热门文章

最新文章

推荐镜像

更多