云原生|kubernetes |使用Prometheus监控k8s cAdvisor篇(进阶篇--- 一)(centos操作系统)

简介: 云原生|kubernetes |使用Prometheus监控k8s cAdvisor篇(进阶篇--- 一)(centos操作系统)

前言:

为了能够提前发现kubernetes集群的问题以及方便快捷的查询容器的各类参数,比如,某个pod的内存使用异常高企等等这样的异常状态(虽然kubernetes有自动重启或者驱逐等等保护措施,但万一没有配置或者失效了呢),容器的内存使用量限制,过去10秒容器CPU的平均负载等等容器的运行参数,这些情况我们自然还是将kubernetes集群纳入到监控系统中好些,毕竟能够发现问题和解决问题更加的优雅嘛。

因此,我们需要能够有一个比较全面的监测容器运行的实时的监控系统,版本答案当然就是Prometheus了。Prometheus监控系统可以多维度的,方便的将我们需要的信息收集起来,然后通过Grafana做一个华丽的展示。

那么,对于容器这个对象来说,我们要使用的收集器就是cAdvisor啦,但cAdvisor这个收集器和node_exporter,mysqld_exporter 这些收集器不太一样,它是集成在kubelet这个服务内的,因此,我们不需要额外的安装cAdvisor收集器,也就是说不需要像node_exporter这样的系统信息收集器一样单独部署了,只要kubernetes的节点上有运行kubelet这个服务就可以了。

下面就kubernetes集群的Prometheus专用于容器的实时信息收集器cAdvisor如何认识它,如何部署它并集成到Prometheus内做一个详细的介绍。

一,

cAdvisor的简介

cAdvisor是一个谷歌开发的容器监控工具,它被内嵌到k8s中作为k8s的监控组件。cAdvisor对Node机器上的资源及容器进行实时监控和性能数据采集,包括CPU使用情况、内存使用情况、网络吞吐量及文件系统使用情况,由于cAdvisor是集成在Kubelet中的,因此,当kubelet启动时会自动启动cAdvisor,即一个cAdvisor仅对一台Node机器进行监控。

二,

其它的用于收集容器信息的信息收集器

heapster和Metrics server以及kube-state-metrics都可用于提供容器信息,但它们所提供的信息维度是不同的,heapster已经被Metrics server所取代 了,如果没记错的话,应该是从k8s的1.16版本后放弃了heapster。

Metrics server作为新的容器信息收集器,是从 api-server 中获取容器的 cpu、内存使用率这种监控指标,并把他们发送给存储后端,可以算作一个完整的监控系统。cAdvisor是专有的容器信息收集,是一个专有工具的地位,而kube-state-metrics是偏向于kubernetes集群内的资源对象,例如deployment,StateFulSet,daemonset等等资源,可以算作一个特定的数据源。

三,

cAdvisor的初步使用

本文以一个minikube搭建的kubernetes单实例为例子,IP地址为:192.168.217.23

A,

关于kubelet

kubelet的API:

kubelet是kubernetes集群中真正维护容器状态,负责主要的业务的一个关键组件。每个节点上都运行一个 kubelet 服务进程,默认监听 10250 端口,接收并执行 master 发来的指令,管理 Pod 及 Pod 中的容器。kubernetes的节点IP+10250端口就是kubelet的API。

几个重要的端口:

10250(kubelet API):kubelet server 与 apiserver 通信的端口,定期请求 apiserver 获取自己所应当处理的任务,通过该端口可以访问获取 node 资源以及状态。kubectl查看pod的日志和cmd命令,都是通过kubelet端口10250访问。

10248端口是什么呢?是kubelet的健康检查端口,可以通过 kubelet 的启动参数 –healthz-port 和 –healthz-bind-address 来指定监听的地址和端口。

需要注意的是,Kubernetes 1.11+ 版本以后,kubelet 就移除了 10255 端口, metrics 接口又回到了 10250 端口中,我的minikube版本是1.18.8,自然是没有10255端口了。

低版本的kubernetes还有一个4194端口,此端口是cAdvisor的web管理界面的端口,可能是出于安全漏洞的考虑,后续版本移除了此端口,因此,此端口在我这个版本内并没有开启。

kubernetes的版本查询:

[root@node3 ~]# k get no
NAME    STATUS   ROLES    AGE   VERSION
node3   Ready    master   18d   v1.18.8

kubelet的端口情况:

[root@node3 ~]# netstat -antup |grep kubelet
tcp        0      0 127.0.0.1:10248         0.0.0.0:*               LISTEN      29681/kubelet       
tcp        0      0 127.0.0.1:39937         0.0.0.0:*               LISTEN      29681/kubelet       
tcp        0      0 192.168.217.23:51058    192.168.217.23:8443     ESTABLISHED 29681/kubelet       
tcp6       0      0 :::10250                :::*                    LISTEN      29681/kubelet       
tcp6       0      0 192.168.217.23:10250    192.168.217.1:59295     ESTABLISHED 29681/kubelet    

kube-apiserver的service:

[root@node3 ~]# k get svc
NAME         TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE
kubernetes   ClusterIP   10.96.0.1      <none>        443/TCP        18d

B,

API的使用

既然都说了节点IP+10250是kubelet的API了,那么,我们肯定可以从这个API里获取到一些信息了,这些信息其实就是cAdvisor收集到的,如何使用这个API呢?这个API可是需要使用证书的https哦。因此,计划建立一个sa,通过sa的token来登陆这个API

(1)

利用ServiceAccount访问API

找一个具有cluster-admin权限的ServiceAccount,其实每个集群内都很容易找到这样的sa,但为了说明问题还是新建一个任意的具有最高权限的sa吧,实际的生产中可不要这么搞哦。

新建一个sa:

kubectl create ns monitor-sa  #创建一个monitor-sa的名称空间
kubectl create serviceaccount monitor -n monitor-sa  #创建一个sa账号
kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin  --serviceaccount=monitor-sa:monitor 

删除这些都会吧,我就不演示了。

查看secret:

[root@node3 ~]# k get secrets -n monitor-sa 
NAME                  TYPE                                  DATA   AGE
default-token-fw7pq   kubernetes.io/service-account-token   3      81s
monitor-token-tf48k   kubernetes.io/service-account-token   3      81s

获取登录用的token:

[root@node3 ~]# k describe secrets -n monitor-sa monitor-token-tf48k 
Name:         monitor-token-tf48k
Namespace:    monitor-sa
Labels:       <none>
Annotations:  kubernetes.io/service-account.name: monitor
              kubernetes.io/service-account.uid: 1c902004-bd78-4aca-b37e-5fe751dfcd4a
Type:  kubernetes.io/service-account-token
Data
====
ca.crt:     1066 bytes
namespace:  10 bytes
token:      eyJhbGciOiJSUzI1NiIsImtpZCI6IllIZ2VhUzN6Q2lSUmE3MEM0ZWpJU255ZXRGRjlkam9rT2JrN0FjNEd1WDgifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yLXNhIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vbml0b3ItdG9rZW4tdGY0OGsiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9uaXRvciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjFjOTAyMDA0LWJkNzgtNGFjYS1iMzdlLTVmZTc1MWRmY2Q0YSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yLXNhOm1vbml0b3IifQ.aUW1XRfGsHiBDWME4JtCs_8144m308ioQ9W1zOg80YIA1VZq5SKAuq_R4XUTyDW7stuSUtTpXhG_HkzoO5sxU7SW6EBIvnOhz-hp3P3S_7BTd5QgZ2PZP9PnJP46lSNS2g0VpqThqtJzXPNZWZnquRV9oHpdeKeeC9b8dcdIwMw_HYC30ydCzt15axf3YNUzVsW1xgLM9fkhTthBm1Z02kcPMqa49nXRQFS3AwVOnlh7Mn4z8OxufVuFY_f5PDkHwnYX4zRgN0PL3On5k_yZgDWgT2kh63fTi4Skmlee7i_1t_lucU-B_8JfLOqiUCUCkt9nr3W4Qj2FOxRyOJ2JtQ

使用10250这个API:

#将token保存到变量TOKEN里面,然后下面的API调试接口命令里面引用
[root@node3 ~]# TOKEN=eyJhbGciOiJSUzI1NiIsImtpZCI6IllIZ2VhUzN6Q2lSUmE3MEM0ZWpJU255ZXRGRjlkam9rT2JrN0FjNEd1WDgifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yLXNhIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vbml0b3ItdG9rZW4tdGY0OGsiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9uaXRvciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjFjOTAyMDA0LWJkNzgtNGFjYS1iMzdlLTVmZTc1MWRmY2Q0YSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yLXNhOm1vbml0b3IifQ.aUW1XRfGsHiBDWME4JtCs_8144m308ioQ9W1zOg80YIA1VZq5SKAuq_R4XUTyDW7stuSUtTpXhG_HkzoO5sxU7SW6EBIvnOhz-hp3P3S_7BTd5QgZ2PZP9PnJP46lSNS2g0VpqThqtJzXPNZWZnquRV9oHpdeKeeC9b8dcdIwMw_HYC30ydCzt15axf3YNUzVsW1xgLM9fkhTthBm1Z02kcPMqa49nXRQFS3AwVOnlh7Mn4z8OxufVuFY_f5PDkHwnYX4zRgN0PL3On5k_yZgDWgT2kh63fTi4Skmlee7i_1t_lucU-B_8JfLOqiUCUCkt9nr3W4Qj2FOxRyOJ2JtQ
curl https://127.0.0.1:10250/metrics/cadvisor -k -H "Authorization: Bearer $TOKEN"

OK,输出茫茫多,稍微截一点吧,剩下的就不贴了,具体的含义后面在说吧:

[root@node3 ~]# curl https://127.0.0.1:10250/metrics/cadvisor -k -H "Authorization: Bearer $TOKEN" |less
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0# HELP cadvisor_version_info A metric with a constant '1' value labeled by kernel version, OS version, docker version, cadvisor version & cadvisor revision.
# TYPE cadvisor_version_info gauge
cadvisor_version_info{cadvisorRevision="",cadvisorVersion="",dockerVersion="19.03.9",kernelVersion="5.16.9-1.el7.elrepo.x86_64",osVersion="CentOS Linux 7 (Core)"} 1
# HELP container_cpu_cfs_periods_total Number of elapsed enforcement period intervals.
# TYPE container_cpu_cfs_periods_total counter
container_cpu_cfs_periods_total{container="",id="/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod019fe473_4f9f_4827_bc76_526f7aa2f97d.slice",image="",name="",namespace="kube-system",pod="kube-flannel-ds-amd64-6cdl5"} 19477 1669053701394
container_cpu_cfs_periods_total{container="addon-resizer",id="/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod7f1fcd63_b032_421c_b929_5c7c905e7ef3.slice/docker-9edba1d252251d7e2886f8a278ee30bb055e73e0f07466cd6680fb13788ab755.scope",image="sha256:ee3db71672efc913209ec07e9912723dd3fc1acfbf92203743bdd847f1eb1578",name="k8s_addon-resizer_kube-state-metrics-c96857b7b-twtpz_kube-system_7f1fcd63-b032-421c-b929-5c7c905e7ef3_1",namespace="kube-system",pod="kube-state-metrics-c96857b7b-twtpz"} 4382 1669053703291
container_cpu_cfs_periods_total{container="kube-flannel",id="/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod019fe473_4f9f_4827_bc76_526f7aa2f97d.slice/docker-84a994ffae8ca838967510c7a79c8b7a5b8befb7c9be78acb4e697cb10a46953.scope",image="sha256:4e9f801d2217e98e94de72cefbcb010a7f2caccf03834dfd12a8e60abcaaecfd",name="k8s_kube-flannel_kube-flannel-ds-amd64-6cdl5_kube-system_019fe473-4f9f-4827-bc76-526f7aa2f97d_35",namespace="kube-system",pod="kube-flannel-ds-amd64-6cdl5"} 19467 1669053704667
# HELP container_cpu_cfs_throttled_periods_total Number of throttled period intervals.

(2)

将上面的命令改造一下,使用kube-apiserver 的服务来访问kube-apiserver 的API接口:

curl https://10.96.0.1/api/v1/nodes/node3/proxy/metrics -k -H "Authorization: Bearer $TOKEN"

这个命令输出的也比较多,就截取一部分吧:

[root@node3 ~]# curl https://10.96.0.1/api/v1/nodes/node3/proxy/metrics -k -H "Authorization: Bearer $TOKEN" |less
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0# HELP apiserver_audit_event_total [ALPHA] Counter of audit events generated and sent to the audit backend.
# TYPE apiserver_audit_event_total counter
apiserver_audit_event_total 0
# HELP apiserver_audit_requests_rejected_total [ALPHA] Counter of apiserver requests rejected due to an error in audit logging backend.
# TYPE apiserver_audit_requests_rejected_total counter
apiserver_audit_requests_rejected_total 0
# HELP apiserver_client_certificate_expiration_seconds [ALPHA] Distribution of the remaining lifetime on the certificate used to authenticate a request.
# TYPE apiserver_client_certificate_expiration_seconds histogram
apiserver_client_certificate_expiration_seconds_bucket{le="0"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="1800"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="3600"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="7200"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="21600"} 0

OK,以上是通过一个具有admin权限的serviceAccount账户直接连接cadvisor和kube-apiserver的API动态获得节点的pod,endpoint等等资源的各个维度的数据。

现在需要将这些集成到Prometheus server里了。




四,

二进制部署的Prometheus server 接入minikube的数据:

将上面的token内容写入/opt/k8s.token这个文件:

echo "eyJhbGciOiJSUzI1NiIsImtpZCI6IllIZ2VhUzN6Q2lSUmE3MEM0ZWpJU255ZXRGRjlkam9rT2JrN0FjNEd1WDgifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yLXNhIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vbml0b3ItdG9rZW4tdGY0OGsiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9uaXRvciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjFjOTAyMDA0LWJkNzgtNGFjYS1iMzdlLTVmZTc1MWRmY2Q0YSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yLXNhOm1vbml0b3IifQ.aUW1XRfGsHiBDWME4JtCs_8144m308ioQ9W1zOg80YIA1VZq5SKAuq_R4XUTyDW7stuSUtTpXhG_HkzoO5sxU7SW6EBIvnOhz-hp3P3S_7BTd5QgZ2PZP9PnJP46lSNS2g0VpqThqtJzXPNZWZnquRV9oHpdeKeeC9b8dcdIwMw_HYC30ydCzt15axf3YNUzVsW1xgLM9fkhTthBm1Z02kcPMqa49nXRQFS3AwVOnlh7Mn4z8OxufVuFY_f5PDkHwnYX4zRgN0PL3On5k_yZgDWgT2kh63fTi4Skmlee7i_1t_lucU-B_8JfLOqiUCUCkt9nr3W4Qj2FOxRyOJ2JtQ" >/opt/k8s.token

Master节点发现

在二进制部署的Prometheus服务器,找出配置文件并增加下面这一段(API Serevr 节点自动发现,如果是HA高可用的apiserver):

  - job_name: 'kubernetes-apiserver'
    kubernetes_sd_configs:
    - role: endpoints
      api_server: https://192.168.217.23:8443
      tls_config:
        insecure_skip_verify: true
      bearer_token_file: /opt/k8s.token
    scheme: https
    tls_config:
      insecure_skip_verify: true
    bearer_token_file: /opt/k8s.token
    relabel_configs:
    - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
      action: keep
      regex: default;kubernetes;https
    - target_label: __address__
      action: replace
      replacement: 192.168.217.23:8443   # api集群地址

Node节点发现

在通用配置文件prometheus.yml,末尾添加Node节点发现:

  - job_name: 'kubernetes-nodes-monitor'
    kubernetes_sd_configs:
    - role: node
      api_server: https://192.168.217.23:8443
      tls_config:
        insecure_skip_verify: true
      bearer_token_file: /opt/k8s.token
    scheme: http
    tls_config:
      insecure_skip_verify: true
    bearer_token_file: /opt/k8s.token
    relabel_configs:
    - source_labels: [__address__]
      regex: '(.*):10250'
      replacement: '${1}:9100'
      target_label: __address__
      action: replace
    - source_labels: [__meta_kubernetes_node_label_failure_domain_beta_kubernetes_io_region]
      regex: '(.*)'
      replacement: '${1}'
      action: replace
      target_label: LOC
    - source_labels: [__meta_kubernetes_node_label_failure_domain_beta_kubernetes_io_region]
      regex: '(.*)'
      replacement: 'NODE'
      action: replace
      target_label: Type
    - source_labels: [__meta_kubernetes_node_label_failure_domain_beta_kubernetes_io_region]
      regex: '(.*)'
      replacement: 'K8S-test'
      action: replace
      target_label: Env
    - action: labelmap
      regex: __meta_kubernetes_node_label_(.+)

部署kube-state-metrics 到minikube:

RBAC文件:

cat >kube-state-metrics-rbac-new.yaml <<EOF
apiVersion: v1
kind: ServiceAccount
metadata:
  name: kube-state-metrics
  namespace: kube-system
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: kube-state-metrics
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups: [""]
  resources:
  - configmaps
  - secrets
  - nodes
  - pods
  - services
  - resourcequotas
  - replicationcontrollers
  - limitranges
  - persistentvolumeclaims
  - persistentvolumes
  - namespaces
  - endpoints
  verbs: ["list", "watch"]
- apiGroups: ["extensions","apps"]
  resources:
  - daemonsets
  - deployments
  - replicasets
  verbs: ["list", "watch"]
- apiGroups: ["apps"]
  resources:
  - statefulsets
  verbs: ["list", "watch"]
- apiGroups: ["batch"]
  resources:
  - cronjobs
  - jobs
  verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
  resources:
  - horizontalpodautoscalers
  verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: kube-state-metrics-resizer
  namespace: kube-system
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups: [""]
  resources:
  - pods
  verbs: ["get"]
- apiGroups: ["extensions","apps"]
  resources:
  - deployments
  resourceNames: ["kube-state-metrics"]
  verbs: ["get", "update"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: kube-state-metrics
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: kube-state-metrics
subjects:
- kind: ServiceAccount
  name: kube-state-metrics
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: kube-state-metrics
  namespace: kube-system
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: kube-state-metrics-resizer
subjects:
- kind: ServiceAccount
  name: kube-state-metrics
  namespace: kube-syste
EOF

service文件:

 cat >kube-state-metrics-svc.yaml <<EOF
apiVersion: v1
kind: Service
metadata:
  name: kube-state-metrics
  namespace: kube-system
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "kube-state-metrics"
  annotations:
    prometheus.io/scrape: 'true'
spec:
  type: NodePort
  ports:
  - name: http-metrics
    port: 8080
    targetPort: http-metrics
    protocol: TCP
    nodePort: 32222
  - name: telemetry
    port: 8081
    targetPort: telemetry
    protocol: TCP
  selector:
    k8s-app: kube-state-metrics
EOF

deployment 文件:

cat >kube-state-metrics-deploy-new.yaml <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kube-state-metrics
  namespace: kube-system
  labels:
    k8s-app: kube-state-metrics
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  selector:
    matchLabels:
      k8s-app: kube-state-metrics
  replicas: 1
  template:
    metadata:
      labels:
        k8s-app: kube-state-metrics
    spec:
      priorityClassName: system-cluster-critical
      serviceAccountName: kube-state-metrics
      containers:
      - name: kube-state-metrics
        image: quay.io/coreos/kube-state-metrics:v1.9.0
        ports:
        - name: http-metrics
          containerPort: 8080
        - name: telemetry
          containerPort: 8081
        readinessProbe:
          httpGet:
            path: /healthz
            port: 8080
          initialDelaySeconds: 5
          timeoutSeconds: 5
      - name: addon-resizer
        image: registry.cn-hangzhou.aliyuncs.com/google_containers/addon-resizer:1.8.6
        resources:
          limits:
            cpu: 100m
            memory: 30Mi
          requests:
            cpu: 100m
            memory: 30Mi
        env:
          - name: MY_POD_NAME
            valueFrom:
              fieldRef:
                fieldPath: metadata.name
          - name: MY_POD_NAMESPACE
            valueFrom:
              fieldRef:
                fieldPath: metadata.namespace
        volumeMounts:
          - name: config-volume
            mountPath: /etc/config
        command:
          - /pod_nanny
          - --config-dir=/etc/config
          - --container=kube-state-metrics
          - --cpu=100m
          - --extra-cpu=1m
          - --memory=100Mi
          - --extra-memory=2Mi
          - --threshold=5
          - --deployment=kube-state-metrics
      volumes:
        - name: config-volume
          configMap:
            name: kube-state-metrics-config
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: kube-state-metrics-config
  namespace: kube-system
  labels:
    k8s-app: kube-state-metrics
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
data:
  NannyConfiguration: |-
    apiVersion: nannyconfig/v1alpha1
    kind: NannyConfiguration
EOF

kube-state-metrics接入Prometheus:

  - job_name: "kube-stat-metrics"
    static_configs:
      - targets: ["192.168.217.23:32222"]



测试环节:

打开Prometheus的管理界面的service discovery:

打开Prometheus的管理界面的targets:

通过cadvisor采集器查询版本信息:

cadvisor_version_info

node_boot_time_seconds

node_cpu_seconds_total

计算平均五分钟内的节点的CPU使用率:

1- sum(increase(node_cpu_seconds_total{mode="idle"}[5m])) by (instance)/sum(increase(node_cpu_seconds_total[5m])) by (instance)

查询节点的内存使用率:

(1- (node_memory_Buffers_bytes + node_memory_Cached_bytes + node_memory_MemFree_bytes) / node_memory_MemTotal_bytes) * 100

查询每个节点的总内存:

(node_memory_MemTotal_bytes)

etcd存储的对象数目:

etcd_object_counts

这些都是可以验证的,比如clusterrole的数量,查询出来的是62个,在集群上实际查询也是可以验证到这个数字是对的:

[root@node3 kube-stat]# k get clusterrole |wc -l
63

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
4月前
|
存储 Kubernetes 网络安全
关于阿里云 Kubernetes 容器服务(ACK)添加镜像仓库的快速说明
本文介绍了在中国大陆地区因网络限制无法正常拉取 Docker 镜像的解决方案。作者所在的阿里云 Kubernetes 集群使用的是较旧版本的 containerd(1.2x),且无法直接通过 SSH 修改节点配置,因此采用了一种无需更改 Kubernetes 配置文件的方法。通过为 `docker.io` 添加 containerd 的镜像源,并使用脚本自动修改 containerd 配置文件中的路径错误(将错误的 `cert.d` 改为 `certs.d`),最终实现了通过多个镜像站点拉取镜像。作者还提供了一个可重复运行的脚本,用于动态配置镜像源。虽然该方案能缓解镜像拉取问题,
525 2
|
10月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
954 33
|
7月前
|
Cloud Native 安全 Linux
龙蜥操作系统:CentOS 谢幕之后,国产云原生系统的崛起之路
龙蜥操作系统(Anolis OS)是 CentOS 停止维护后,由阿里云等企业联合发起的开源项目。它以双内核架构和全栈优化为核心,提供无缝替代 CentOS 的方案,兼容主流生态并针对云计算场景深度优化。其技术亮点包括 RHCK 和 ANCK 双内核、性能优化、全栈安全及国密算法支持。龙蜥适用于云原生基础设施、企业级应用部署及开发环境,社区已吸引 200 多家单位参与。未来规划涵盖 AI 框架优化、RISC-V 架构适配及桌面环境构建,正重新定义云时代的操作系统边界。
1769 0
|
10月前
|
Prometheus Kubernetes 监控
Kubernetes监控:Prometheus与AlertManager结合,配置邮件告警。
完成这些步骤之后,您就拥有了一个可以用邮件通知你的Kubernetes监控解决方案了。当然,所有的这些配置都需要相互照应,还要对你的Kubernetes集群状况有深入的了解。希望这份指南能帮助你创建出适合自己场景的监控系统,让你在首次发现问题时就能做出响应。
587 22
|
10月前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
存储 运维 Kubernetes
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
飞轮科技推出了 Doris 的 Kubernetes Operator 开源项目(简称:Doris Operator),并捐赠给 Apache 基金会。该工具集成了原生 Kubernetes 资源的复杂管理能力,并融合了 Doris 组件间的分布式协同、用户集群形态的按需定制等经验,为用户提供了一个更简洁、高效、易用的容器化部署方案。
581 16
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
|
11月前
|
监控 Kubernetes Cloud Native
基于阿里云容器服务Kubernetes版(ACK)的微服务架构设计与实践
本文介绍了如何基于阿里云容器服务Kubernetes版(ACK)设计和实现微服务架构。首先概述了微服务架构的优势与挑战,如模块化、可扩展性及技术多样性。接着详细描述了ACK的核心功能,包括集群管理、应用管理、网络与安全、监控与日志等。在设计基于ACK的微服务架构时,需考虑服务拆分、通信、发现与负载均衡、配置管理、监控与日志以及CI/CD等方面。通过一个电商应用案例,展示了用户服务、商品服务、订单服务和支付服务的具体部署步骤。最后总结了ACK为微服务架构提供的强大支持,帮助应对各种挑战,构建高效可靠的云原生应用。
|
11月前
|
弹性计算 人工智能 资源调度
DeepSeek大解读系列公开课上新!阿里云专家主讲云上智能算力、Kubernetes容器服务、DeepSeek私有化部署
智猩猩「DeepSeek大解读」系列公开课第三期即将开讲,聚焦阿里云弹性计算助力大模型训练与部署。三位专家将分别讲解智能算力支撑、Kubernetes容器服务在AI场景的应用实践、以及DeepSeek一键部署和多渠道应用集成,分享云计算如何赋能大模型发展。欲观看直播,可关注【智猩猩GenAI视频号】预约。 (239字符)
|
10月前
|
存储 运维 Kubernetes
容器数据保护:基于容器服务 Kubernetes 版(ACK)备份中心实现K8s存储卷一键备份与恢复
阿里云ACK备份中心提供一站式容器化业务灾备及迁移方案,减少数据丢失风险,确保业务稳定运行。
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
1476 19