云原生|kubernetes |使用Prometheus监控k8s cAdvisor篇(进阶篇--- 一)(centos操作系统)

本文涉及的产品
可观测监控 Prometheus 版,每月50GB免费额度
简介: 云原生|kubernetes |使用Prometheus监控k8s cAdvisor篇(进阶篇--- 一)(centos操作系统)

前言:

为了能够提前发现kubernetes集群的问题以及方便快捷的查询容器的各类参数,比如,某个pod的内存使用异常高企等等这样的异常状态(虽然kubernetes有自动重启或者驱逐等等保护措施,但万一没有配置或者失效了呢),容器的内存使用量限制,过去10秒容器CPU的平均负载等等容器的运行参数,这些情况我们自然还是将kubernetes集群纳入到监控系统中好些,毕竟能够发现问题和解决问题更加的优雅嘛。

因此,我们需要能够有一个比较全面的监测容器运行的实时的监控系统,版本答案当然就是Prometheus了。Prometheus监控系统可以多维度的,方便的将我们需要的信息收集起来,然后通过Grafana做一个华丽的展示。

那么,对于容器这个对象来说,我们要使用的收集器就是cAdvisor啦,但cAdvisor这个收集器和node_exporter,mysqld_exporter 这些收集器不太一样,它是集成在kubelet这个服务内的,因此,我们不需要额外的安装cAdvisor收集器,也就是说不需要像node_exporter这样的系统信息收集器一样单独部署了,只要kubernetes的节点上有运行kubelet这个服务就可以了。

下面就kubernetes集群的Prometheus专用于容器的实时信息收集器cAdvisor如何认识它,如何部署它并集成到Prometheus内做一个详细的介绍。

一,

cAdvisor的简介

cAdvisor是一个谷歌开发的容器监控工具,它被内嵌到k8s中作为k8s的监控组件。cAdvisor对Node机器上的资源及容器进行实时监控和性能数据采集,包括CPU使用情况、内存使用情况、网络吞吐量及文件系统使用情况,由于cAdvisor是集成在Kubelet中的,因此,当kubelet启动时会自动启动cAdvisor,即一个cAdvisor仅对一台Node机器进行监控。

二,

其它的用于收集容器信息的信息收集器

heapster和Metrics server以及kube-state-metrics都可用于提供容器信息,但它们所提供的信息维度是不同的,heapster已经被Metrics server所取代 了,如果没记错的话,应该是从k8s的1.16版本后放弃了heapster。

Metrics server作为新的容器信息收集器,是从 api-server 中获取容器的 cpu、内存使用率这种监控指标,并把他们发送给存储后端,可以算作一个完整的监控系统。cAdvisor是专有的容器信息收集,是一个专有工具的地位,而kube-state-metrics是偏向于kubernetes集群内的资源对象,例如deployment,StateFulSet,daemonset等等资源,可以算作一个特定的数据源。

三,

cAdvisor的初步使用

本文以一个minikube搭建的kubernetes单实例为例子,IP地址为:192.168.217.23

A,

关于kubelet

kubelet的API:

kubelet是kubernetes集群中真正维护容器状态,负责主要的业务的一个关键组件。每个节点上都运行一个 kubelet 服务进程,默认监听 10250 端口,接收并执行 master 发来的指令,管理 Pod 及 Pod 中的容器。kubernetes的节点IP+10250端口就是kubelet的API。

几个重要的端口:

10250(kubelet API):kubelet server 与 apiserver 通信的端口,定期请求 apiserver 获取自己所应当处理的任务,通过该端口可以访问获取 node 资源以及状态。kubectl查看pod的日志和cmd命令,都是通过kubelet端口10250访问。

10248端口是什么呢?是kubelet的健康检查端口,可以通过 kubelet 的启动参数 –healthz-port 和 –healthz-bind-address 来指定监听的地址和端口。

需要注意的是,Kubernetes 1.11+ 版本以后,kubelet 就移除了 10255 端口, metrics 接口又回到了 10250 端口中,我的minikube版本是1.18.8,自然是没有10255端口了。

低版本的kubernetes还有一个4194端口,此端口是cAdvisor的web管理界面的端口,可能是出于安全漏洞的考虑,后续版本移除了此端口,因此,此端口在我这个版本内并没有开启。

kubernetes的版本查询:

[root@node3 ~]# k get no
NAME    STATUS   ROLES    AGE   VERSION
node3   Ready    master   18d   v1.18.8

kubelet的端口情况:

[root@node3 ~]# netstat -antup |grep kubelet
tcp        0      0 127.0.0.1:10248         0.0.0.0:*               LISTEN      29681/kubelet       
tcp        0      0 127.0.0.1:39937         0.0.0.0:*               LISTEN      29681/kubelet       
tcp        0      0 192.168.217.23:51058    192.168.217.23:8443     ESTABLISHED 29681/kubelet       
tcp6       0      0 :::10250                :::*                    LISTEN      29681/kubelet       
tcp6       0      0 192.168.217.23:10250    192.168.217.1:59295     ESTABLISHED 29681/kubelet    

kube-apiserver的service:

[root@node3 ~]# k get svc
NAME         TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)        AGE
kubernetes   ClusterIP   10.96.0.1      <none>        443/TCP        18d

B,

API的使用

既然都说了节点IP+10250是kubelet的API了,那么,我们肯定可以从这个API里获取到一些信息了,这些信息其实就是cAdvisor收集到的,如何使用这个API呢?这个API可是需要使用证书的https哦。因此,计划建立一个sa,通过sa的token来登陆这个API

(1)

利用ServiceAccount访问API

找一个具有cluster-admin权限的ServiceAccount,其实每个集群内都很容易找到这样的sa,但为了说明问题还是新建一个任意的具有最高权限的sa吧,实际的生产中可不要这么搞哦。

新建一个sa:

kubectl create ns monitor-sa  #创建一个monitor-sa的名称空间
kubectl create serviceaccount monitor -n monitor-sa  #创建一个sa账号
kubectl create clusterrolebinding monitor-clusterrolebinding -n monitor-sa --clusterrole=cluster-admin  --serviceaccount=monitor-sa:monitor 

删除这些都会吧,我就不演示了。

查看secret:

[root@node3 ~]# k get secrets -n monitor-sa 
NAME                  TYPE                                  DATA   AGE
default-token-fw7pq   kubernetes.io/service-account-token   3      81s
monitor-token-tf48k   kubernetes.io/service-account-token   3      81s

获取登录用的token:

[root@node3 ~]# k describe secrets -n monitor-sa monitor-token-tf48k 
Name:         monitor-token-tf48k
Namespace:    monitor-sa
Labels:       <none>
Annotations:  kubernetes.io/service-account.name: monitor
              kubernetes.io/service-account.uid: 1c902004-bd78-4aca-b37e-5fe751dfcd4a
Type:  kubernetes.io/service-account-token
Data
====
ca.crt:     1066 bytes
namespace:  10 bytes
token:      eyJhbGciOiJSUzI1NiIsImtpZCI6IllIZ2VhUzN6Q2lSUmE3MEM0ZWpJU255ZXRGRjlkam9rT2JrN0FjNEd1WDgifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yLXNhIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vbml0b3ItdG9rZW4tdGY0OGsiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9uaXRvciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjFjOTAyMDA0LWJkNzgtNGFjYS1iMzdlLTVmZTc1MWRmY2Q0YSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yLXNhOm1vbml0b3IifQ.aUW1XRfGsHiBDWME4JtCs_8144m308ioQ9W1zOg80YIA1VZq5SKAuq_R4XUTyDW7stuSUtTpXhG_HkzoO5sxU7SW6EBIvnOhz-hp3P3S_7BTd5QgZ2PZP9PnJP46lSNS2g0VpqThqtJzXPNZWZnquRV9oHpdeKeeC9b8dcdIwMw_HYC30ydCzt15axf3YNUzVsW1xgLM9fkhTthBm1Z02kcPMqa49nXRQFS3AwVOnlh7Mn4z8OxufVuFY_f5PDkHwnYX4zRgN0PL3On5k_yZgDWgT2kh63fTi4Skmlee7i_1t_lucU-B_8JfLOqiUCUCkt9nr3W4Qj2FOxRyOJ2JtQ

使用10250这个API:

#将token保存到变量TOKEN里面,然后下面的API调试接口命令里面引用
[root@node3 ~]# TOKEN=eyJhbGciOiJSUzI1NiIsImtpZCI6IllIZ2VhUzN6Q2lSUmE3MEM0ZWpJU255ZXRGRjlkam9rT2JrN0FjNEd1WDgifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yLXNhIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vbml0b3ItdG9rZW4tdGY0OGsiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9uaXRvciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjFjOTAyMDA0LWJkNzgtNGFjYS1iMzdlLTVmZTc1MWRmY2Q0YSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yLXNhOm1vbml0b3IifQ.aUW1XRfGsHiBDWME4JtCs_8144m308ioQ9W1zOg80YIA1VZq5SKAuq_R4XUTyDW7stuSUtTpXhG_HkzoO5sxU7SW6EBIvnOhz-hp3P3S_7BTd5QgZ2PZP9PnJP46lSNS2g0VpqThqtJzXPNZWZnquRV9oHpdeKeeC9b8dcdIwMw_HYC30ydCzt15axf3YNUzVsW1xgLM9fkhTthBm1Z02kcPMqa49nXRQFS3AwVOnlh7Mn4z8OxufVuFY_f5PDkHwnYX4zRgN0PL3On5k_yZgDWgT2kh63fTi4Skmlee7i_1t_lucU-B_8JfLOqiUCUCkt9nr3W4Qj2FOxRyOJ2JtQ
curl https://127.0.0.1:10250/metrics/cadvisor -k -H "Authorization: Bearer $TOKEN"

OK,输出茫茫多,稍微截一点吧,剩下的就不贴了,具体的含义后面在说吧:

[root@node3 ~]# curl https://127.0.0.1:10250/metrics/cadvisor -k -H "Authorization: Bearer $TOKEN" |less
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0# HELP cadvisor_version_info A metric with a constant '1' value labeled by kernel version, OS version, docker version, cadvisor version & cadvisor revision.
# TYPE cadvisor_version_info gauge
cadvisor_version_info{cadvisorRevision="",cadvisorVersion="",dockerVersion="19.03.9",kernelVersion="5.16.9-1.el7.elrepo.x86_64",osVersion="CentOS Linux 7 (Core)"} 1
# HELP container_cpu_cfs_periods_total Number of elapsed enforcement period intervals.
# TYPE container_cpu_cfs_periods_total counter
container_cpu_cfs_periods_total{container="",id="/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod019fe473_4f9f_4827_bc76_526f7aa2f97d.slice",image="",name="",namespace="kube-system",pod="kube-flannel-ds-amd64-6cdl5"} 19477 1669053701394
container_cpu_cfs_periods_total{container="addon-resizer",id="/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod7f1fcd63_b032_421c_b929_5c7c905e7ef3.slice/docker-9edba1d252251d7e2886f8a278ee30bb055e73e0f07466cd6680fb13788ab755.scope",image="sha256:ee3db71672efc913209ec07e9912723dd3fc1acfbf92203743bdd847f1eb1578",name="k8s_addon-resizer_kube-state-metrics-c96857b7b-twtpz_kube-system_7f1fcd63-b032-421c-b929-5c7c905e7ef3_1",namespace="kube-system",pod="kube-state-metrics-c96857b7b-twtpz"} 4382 1669053703291
container_cpu_cfs_periods_total{container="kube-flannel",id="/kubepods.slice/kubepods-burstable.slice/kubepods-burstable-pod019fe473_4f9f_4827_bc76_526f7aa2f97d.slice/docker-84a994ffae8ca838967510c7a79c8b7a5b8befb7c9be78acb4e697cb10a46953.scope",image="sha256:4e9f801d2217e98e94de72cefbcb010a7f2caccf03834dfd12a8e60abcaaecfd",name="k8s_kube-flannel_kube-flannel-ds-amd64-6cdl5_kube-system_019fe473-4f9f-4827-bc76-526f7aa2f97d_35",namespace="kube-system",pod="kube-flannel-ds-amd64-6cdl5"} 19467 1669053704667
# HELP container_cpu_cfs_throttled_periods_total Number of throttled period intervals.

(2)

将上面的命令改造一下,使用kube-apiserver 的服务来访问kube-apiserver 的API接口:

curl https://10.96.0.1/api/v1/nodes/node3/proxy/metrics -k -H "Authorization: Bearer $TOKEN"

这个命令输出的也比较多,就截取一部分吧:

[root@node3 ~]# curl https://10.96.0.1/api/v1/nodes/node3/proxy/metrics -k -H "Authorization: Bearer $TOKEN" |less
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
  0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0# HELP apiserver_audit_event_total [ALPHA] Counter of audit events generated and sent to the audit backend.
# TYPE apiserver_audit_event_total counter
apiserver_audit_event_total 0
# HELP apiserver_audit_requests_rejected_total [ALPHA] Counter of apiserver requests rejected due to an error in audit logging backend.
# TYPE apiserver_audit_requests_rejected_total counter
apiserver_audit_requests_rejected_total 0
# HELP apiserver_client_certificate_expiration_seconds [ALPHA] Distribution of the remaining lifetime on the certificate used to authenticate a request.
# TYPE apiserver_client_certificate_expiration_seconds histogram
apiserver_client_certificate_expiration_seconds_bucket{le="0"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="1800"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="3600"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="7200"} 0
apiserver_client_certificate_expiration_seconds_bucket{le="21600"} 0

OK,以上是通过一个具有admin权限的serviceAccount账户直接连接cadvisor和kube-apiserver的API动态获得节点的pod,endpoint等等资源的各个维度的数据。

现在需要将这些集成到Prometheus server里了。




四,

二进制部署的Prometheus server 接入minikube的数据:

将上面的token内容写入/opt/k8s.token这个文件:

echo "eyJhbGciOiJSUzI1NiIsImtpZCI6IllIZ2VhUzN6Q2lSUmE3MEM0ZWpJU255ZXRGRjlkam9rT2JrN0FjNEd1WDgifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJtb25pdG9yLXNhIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6Im1vbml0b3ItdG9rZW4tdGY0OGsiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoibW9uaXRvciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjFjOTAyMDA0LWJkNzgtNGFjYS1iMzdlLTVmZTc1MWRmY2Q0YSIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDptb25pdG9yLXNhOm1vbml0b3IifQ.aUW1XRfGsHiBDWME4JtCs_8144m308ioQ9W1zOg80YIA1VZq5SKAuq_R4XUTyDW7stuSUtTpXhG_HkzoO5sxU7SW6EBIvnOhz-hp3P3S_7BTd5QgZ2PZP9PnJP46lSNS2g0VpqThqtJzXPNZWZnquRV9oHpdeKeeC9b8dcdIwMw_HYC30ydCzt15axf3YNUzVsW1xgLM9fkhTthBm1Z02kcPMqa49nXRQFS3AwVOnlh7Mn4z8OxufVuFY_f5PDkHwnYX4zRgN0PL3On5k_yZgDWgT2kh63fTi4Skmlee7i_1t_lucU-B_8JfLOqiUCUCkt9nr3W4Qj2FOxRyOJ2JtQ" >/opt/k8s.token

Master节点发现

在二进制部署的Prometheus服务器,找出配置文件并增加下面这一段(API Serevr 节点自动发现,如果是HA高可用的apiserver):

  - job_name: 'kubernetes-apiserver'
    kubernetes_sd_configs:
    - role: endpoints
      api_server: https://192.168.217.23:8443
      tls_config:
        insecure_skip_verify: true
      bearer_token_file: /opt/k8s.token
    scheme: https
    tls_config:
      insecure_skip_verify: true
    bearer_token_file: /opt/k8s.token
    relabel_configs:
    - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
      action: keep
      regex: default;kubernetes;https
    - target_label: __address__
      action: replace
      replacement: 192.168.217.23:8443   # api集群地址

Node节点发现

在通用配置文件prometheus.yml,末尾添加Node节点发现:

  - job_name: 'kubernetes-nodes-monitor'
    kubernetes_sd_configs:
    - role: node
      api_server: https://192.168.217.23:8443
      tls_config:
        insecure_skip_verify: true
      bearer_token_file: /opt/k8s.token
    scheme: http
    tls_config:
      insecure_skip_verify: true
    bearer_token_file: /opt/k8s.token
    relabel_configs:
    - source_labels: [__address__]
      regex: '(.*):10250'
      replacement: '${1}:9100'
      target_label: __address__
      action: replace
    - source_labels: [__meta_kubernetes_node_label_failure_domain_beta_kubernetes_io_region]
      regex: '(.*)'
      replacement: '${1}'
      action: replace
      target_label: LOC
    - source_labels: [__meta_kubernetes_node_label_failure_domain_beta_kubernetes_io_region]
      regex: '(.*)'
      replacement: 'NODE'
      action: replace
      target_label: Type
    - source_labels: [__meta_kubernetes_node_label_failure_domain_beta_kubernetes_io_region]
      regex: '(.*)'
      replacement: 'K8S-test'
      action: replace
      target_label: Env
    - action: labelmap
      regex: __meta_kubernetes_node_label_(.+)

部署kube-state-metrics 到minikube:

RBAC文件:

cat >kube-state-metrics-rbac-new.yaml <<EOF
apiVersion: v1
kind: ServiceAccount
metadata:
  name: kube-state-metrics
  namespace: kube-system
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: kube-state-metrics
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups: [""]
  resources:
  - configmaps
  - secrets
  - nodes
  - pods
  - services
  - resourcequotas
  - replicationcontrollers
  - limitranges
  - persistentvolumeclaims
  - persistentvolumes
  - namespaces
  - endpoints
  verbs: ["list", "watch"]
- apiGroups: ["extensions","apps"]
  resources:
  - daemonsets
  - deployments
  - replicasets
  verbs: ["list", "watch"]
- apiGroups: ["apps"]
  resources:
  - statefulsets
  verbs: ["list", "watch"]
- apiGroups: ["batch"]
  resources:
  - cronjobs
  - jobs
  verbs: ["list", "watch"]
- apiGroups: ["autoscaling"]
  resources:
  - horizontalpodautoscalers
  verbs: ["list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: kube-state-metrics-resizer
  namespace: kube-system
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups: [""]
  resources:
  - pods
  verbs: ["get"]
- apiGroups: ["extensions","apps"]
  resources:
  - deployments
  resourceNames: ["kube-state-metrics"]
  verbs: ["get", "update"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: kube-state-metrics
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: kube-state-metrics
subjects:
- kind: ServiceAccount
  name: kube-state-metrics
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: kube-state-metrics
  namespace: kube-system
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: kube-state-metrics-resizer
subjects:
- kind: ServiceAccount
  name: kube-state-metrics
  namespace: kube-syste
EOF

service文件:

 cat >kube-state-metrics-svc.yaml <<EOF
apiVersion: v1
kind: Service
metadata:
  name: kube-state-metrics
  namespace: kube-system
  labels:
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
    kubernetes.io/name: "kube-state-metrics"
  annotations:
    prometheus.io/scrape: 'true'
spec:
  type: NodePort
  ports:
  - name: http-metrics
    port: 8080
    targetPort: http-metrics
    protocol: TCP
    nodePort: 32222
  - name: telemetry
    port: 8081
    targetPort: telemetry
    protocol: TCP
  selector:
    k8s-app: kube-state-metrics
EOF

deployment 文件:

cat >kube-state-metrics-deploy-new.yaml <<EOF
apiVersion: apps/v1
kind: Deployment
metadata:
  name: kube-state-metrics
  namespace: kube-system
  labels:
    k8s-app: kube-state-metrics
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
spec:
  selector:
    matchLabels:
      k8s-app: kube-state-metrics
  replicas: 1
  template:
    metadata:
      labels:
        k8s-app: kube-state-metrics
    spec:
      priorityClassName: system-cluster-critical
      serviceAccountName: kube-state-metrics
      containers:
      - name: kube-state-metrics
        image: quay.io/coreos/kube-state-metrics:v1.9.0
        ports:
        - name: http-metrics
          containerPort: 8080
        - name: telemetry
          containerPort: 8081
        readinessProbe:
          httpGet:
            path: /healthz
            port: 8080
          initialDelaySeconds: 5
          timeoutSeconds: 5
      - name: addon-resizer
        image: registry.cn-hangzhou.aliyuncs.com/google_containers/addon-resizer:1.8.6
        resources:
          limits:
            cpu: 100m
            memory: 30Mi
          requests:
            cpu: 100m
            memory: 30Mi
        env:
          - name: MY_POD_NAME
            valueFrom:
              fieldRef:
                fieldPath: metadata.name
          - name: MY_POD_NAMESPACE
            valueFrom:
              fieldRef:
                fieldPath: metadata.namespace
        volumeMounts:
          - name: config-volume
            mountPath: /etc/config
        command:
          - /pod_nanny
          - --config-dir=/etc/config
          - --container=kube-state-metrics
          - --cpu=100m
          - --extra-cpu=1m
          - --memory=100Mi
          - --extra-memory=2Mi
          - --threshold=5
          - --deployment=kube-state-metrics
      volumes:
        - name: config-volume
          configMap:
            name: kube-state-metrics-config
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: kube-state-metrics-config
  namespace: kube-system
  labels:
    k8s-app: kube-state-metrics
    kubernetes.io/cluster-service: "true"
    addonmanager.kubernetes.io/mode: Reconcile
data:
  NannyConfiguration: |-
    apiVersion: nannyconfig/v1alpha1
    kind: NannyConfiguration
EOF

kube-state-metrics接入Prometheus:

  - job_name: "kube-stat-metrics"
    static_configs:
      - targets: ["192.168.217.23:32222"]



测试环节:

打开Prometheus的管理界面的service discovery:

打开Prometheus的管理界面的targets:

通过cadvisor采集器查询版本信息:

cadvisor_version_info

node_boot_time_seconds

node_cpu_seconds_total

计算平均五分钟内的节点的CPU使用率:

1- sum(increase(node_cpu_seconds_total{mode="idle"}[5m])) by (instance)/sum(increase(node_cpu_seconds_total[5m])) by (instance)

查询节点的内存使用率:

(1- (node_memory_Buffers_bytes + node_memory_Cached_bytes + node_memory_MemFree_bytes) / node_memory_MemTotal_bytes) * 100

查询每个节点的总内存:

(node_memory_MemTotal_bytes)

etcd存储的对象数目:

etcd_object_counts

这些都是可以验证的,比如clusterrole的数量,查询出来的是62个,在集群上实际查询也是可以验证到这个数字是对的:

[root@node3 kube-stat]# k get clusterrole |wc -l
63

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
1月前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
95 2
|
7天前
|
Kubernetes 应用服务中间件 nginx
二进制安装Kubernetes(k8s)v1.32.0
本指南提供了一个详细的步骤,用于在Linux系统上通过二进制文件安装Kubernetes(k8s)v1.32.0,支持IPv4+IPv6双栈。具体步骤包括环境准备、系统配置、组件安装和配置等。
91 10
|
11天前
|
存储 Kubernetes 关系型数据库
阿里云ACK备份中心,K8s集群业务应用数据的一站式灾备方案
本文源自2024云栖大会苏雅诗的演讲,探讨了K8s集群业务为何需要灾备及其重要性。文中强调了集群与业务高可用配置对稳定性的重要性,并指出人为误操作等风险,建议实施周期性和特定情况下的灾备措施。针对容器化业务,提出了灾备的新特性与需求,包括工作负载为核心、云资源信息的备份,以及有状态应用的数据保护。介绍了ACK推出的备份中心解决方案,支持命名空间、标签、资源类型等维度的备份,并具备存储卷数据保护功能,能够满足GitOps流程企业的特定需求。此外,还详细描述了备份中心的使用流程、控制台展示、灾备难点及解决方案等内容,展示了备份中心如何有效应对K8s集群资源和存储卷数据的灾备挑战。
|
2月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
135 60
|
25天前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。
|
1月前
|
Kubernetes Cloud Native 开发者
云原生入门:Kubernetes的简易指南
【10月更文挑战第41天】本文将带你进入云原生的世界,特别是Kubernetes——一个强大的容器编排平台。我们将一起探索它的基本概念和操作,让你能够轻松管理和部署应用。无论你是新手还是有经验的开发者,这篇文章都能让你对Kubernetes有更深入的理解。
|
1月前
|
运维 Kubernetes Cloud Native
云原生技术入门:Kubernetes和Docker的协同工作
【10月更文挑战第43天】在云计算时代,云原生技术成为推动现代软件部署和运行的关键力量。本篇文章将带你了解云原生的基本概念,重点探讨Kubernetes和Docker如何协同工作以支持容器化应用的生命周期管理。通过实际代码示例,我们将展示如何在Kubernetes集群中部署和管理Docker容器,从而为初学者提供一条清晰的学习路径。
|
1月前
|
Kubernetes 负载均衡 Cloud Native
探索Kubernetes:云原生应用的基石
探索Kubernetes:云原生应用的基石
|
1月前
|
Kubernetes 监控 负载均衡
深入云原生:Kubernetes 集群部署与管理实践
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其弹性、可扩展性成为企业IT架构的首选。本文将引导你了解如何部署和管理一个Kubernetes集群,包括环境准备、安装步骤和日常维护技巧。我们将通过实际代码示例,探索云原生世界的秘密,并分享如何高效运用这一技术以适应快速变化的业务需求。
63 1
|
1月前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
下一篇
DataWorks