OpenCV中LBPH人脸识别器识别人脸实战(附Python源码)

简介: OpenCV中LBPH人脸识别器识别人脸实战(附Python源码)

需要源码和图片请点赞关注收藏后评论区留言私信~~~

Local Binary Pattern Histofram简称LBPH,即局部二进制模式直方图,这是一种基于局部二进制模式算法,这种算法善于捕获局部纹理特征

开发者需要通过以下三种方法来完成人脸识别操作

1:通过cv2.face.LBPHFaceRecognizer_create()方法创建LBPH人脸识别器对象 语法如下

recognizer=cv2.face.LBPHFaceRecognizer_create(radius,neighbors,grid_x,grid_y,threshold)

radius:可选参数 圆形局部二进制模式的半径,建议使用默认值

neighbors:可选参数,圆形局部二进制模式的采样点数目,建议使用默认值

grid_x:可选参数 水平方向上的的单元格数,建议使用默认值

grid_y:可选参数 垂直方向上的的单元格数  建议使用默认值

threshold:可选参数 人脸识别时使用的阈值,建议使用默认值

2:创建识别器对象后,需要通过对象的train方法训练识别器,建议每个人都给出两幅以上的人脸图像作为训练样本,train方法的语法如下

recognizer.train(src,labels)

参数说明

recognizer 已有的LBPH人脸识别器对象

src 用来训练的人脸图像样本列表,格式为list,样本图像必须宽高一致

labels 样本对应的标签,格式为数组,元素类型为整数,数组长度必须与样本列表长度相同,样本与标签按照插入顺序一一对应

3:训练识别器后就可以通过识别器的predict方法识别人脸,该方法对比样本的特征,给出最接近的结果和评分,语法如下

label,confidence=recognizer.predict(src)

参数说明

src 需要识别的人脸图像 该图像宽高必须与样本一致

label 与样本匹配程度最高的标签值

confidenct 匹配程度最高的信用度评分,评分小于50匹配程度较高,0分表示两幅图像完全一样

下面使用LBPH识别人脸实战

下面以两个人的照片作为训练样本

待识别照片如下

程序输出如下

confidence=45.0823265

RuiRui

程序对比样本特征分析得出,被识别的人物最接近的是RuiRui

部分代码如下

import cv2
import numpy as np
photos = list()  # 样本图像列表
lables = list()  # 标签列表
photos.append(cv2.imread("face\\lxe1.png", 0))  # 记录第1张人脸图像
lables.append(0)  # 第1张图像对应的标签
photos.append(cv2.imread("face\\lxe2.png", 0))  # 记录第2张人脸图像
lables.append(0)  # 第2张图像对应的标签
photos.append(cv2.imread("face\\lxe3.png", 0))  # 记录第3张人脸图像
lables.append(0)  # 第3张图像对应的标签
photos.append(cv2.imread("face\\ruirui1.png", 0))  # 记录第4张人脸图像
lables.append(1)  # 第4张图像对应的标签
photos.append(cv2.imread("face\\ruirui2.png", 0))  # 记录第5张人脸图像
lables.append(1)  #图像对应的标签
photos.append(cv2.imread("face\\ruirui3.png", 0))  # 记录第6张人脸图像
lables.append(1)  # 第6张图像对应的标签
names = {"0": "LXE", "1": "RuiRui"}  # 标签对应的名称字典
recognier = cv2.face.LBPHFaceRecognizer_create()  # 创建LBPH识别器(photos, np.array(lables))  # 识别器开始训练
i = cv2.imread("face\\ruirui4.png", 0)  # 待识别的人脸图像
label, confience = recognizer.predict(i)  # 识别器开始分析人脸图像
print("confidee= " + str(confidence))  # 打印评分
print(names[str(lael)])  # 数组字典里标签对应的名字
cv2.waitKey()  #下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

总结

人脸检测和人脸识别是相辅相成的,这是因为在进行人脸识别前,要先判断当前图像内是否出现了人脸,这个判断过程需要由人脸检测完成。只有在当前图像内检测到人脸,才能判断出这张人脸属于哪个人,这个判断是由人脸识别器完成的。因此,人脸识别指的是程序先在图像内检测人脸,再识别这张人脸属于哪个人的过程

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
13天前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
210 0
|
11天前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
13天前
|
JavaScript 前端开发 安全
【逆向】Python 调用 JS 代码实战:使用 pyexecjs 与 Node.js 无缝衔接
本文介绍了如何使用 Python 的轻量级库 `pyexecjs` 调用 JavaScript 代码,并结合 Node.js 实现完整的执行流程。内容涵盖环境搭建、基本使用、常见问题解决方案及爬虫逆向分析中的实战技巧,帮助开发者在 Python 中高效处理 JS 逻辑。
|
19天前
|
开发工具 Android开发 开发者
用Flet打造跨平台文本编辑器:从零到一的Python实战指南
本文介绍如何使用Flet框架开发一个跨平台、自动保存的文本编辑器,代码不足200行,兼具现代化UI与高效开发体验。
150 0
|
弹性计算 Java PHP
新手用户注册阿里云账号、实名认证、购买云服务器图文教程参考
对于初次购买阿里云产品的用户来说,第一步要做的是注册账号并完成实名认证,然后才是购买阿里云服务器或者其他云产品,本文为大家以图文形式展示一下新手用户从注册阿里云账号、实名认证到购买云服务器完整详细教程,以供参考。
新手用户注册阿里云账号、实名认证、购买云服务器图文教程参考
|
文字识别 算法 API
视觉智能开放平台产品使用合集之uniapp框架如何使用阿里云金融级人脸识别
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
312 0
|
机器学习/深度学习 搜索推荐 计算机视觉
【阿里云OpenVI-人脸感知理解系列之人脸识别】基于Transformer的人脸识别新框架TransFace ICCV-2023论文深入解读
本文介绍 阿里云开放视觉智能团队 被计算机视觉顶级国际会议ICCV 2023接收的论文 "TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective"。TransFace旨在探索ViT在人脸识别任务上表现不佳的原因,并从data-centric的角度去提升ViT在人脸识别任务上的性能。
2970 341
对于阿里云OpenAPI的域名实名认证
【1月更文挑战第5天】【1月更文挑战第22篇】对于阿里云OpenAPI的域名实名认证
157 1

热门文章

最新文章

推荐镜像

更多